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ABSTRACT: This report is divided into five parts corresponding 

roughly to five separate endeavors executed in the study. 

Chapter I, entitled "Space Applications of a Minimization 

Algorithm, describes the logic minimization problem, a slightly 

updated version of the extraction algorithm, a user's descrip- 

tion of the IBM 7094 program MIN6, together with several ex- 

amples of use of the program in space applications. 

paper will be submitted to the IEEE Transactions on Aerospace 

& Electronic Systems c/o the Telemetry Editor, John E. Gaffney,Jr., 
18100 Frederick Pike, Gaithersburg 20760.) 

(This 

Chapter I1 is the paper: "A Calculus and an Algorithm for 
a Logic Minimization Problem Together with an Algorithmic Notation.:' 

This is a writeup of the multiple--output extraction algorithm. In 

this paper the notion of singular cube and singular complex is 

introduced, together with a calculus for appropriate computations, 

together with a new algorithmic notation used to describe the 

algorithm. A proof of the validity of the algorithm is given. 

This paper has been submitted to the IBM Journal of Research and 

Development. 



Chapter I11 is "An Axiomatic Treatment of Roth's Extrac- 
tion Algorithm." This paper presents a general axiomatic 

treatment of J. Paul Roth's "extraction algorithm" for the 
minimization of logical circuits. This treatment brings to- 

gether the seemingly different versions of the algorithm 

presented in Roth's different papers, and it provides a 

general proof of the algorithm over a wide range of cost 

functions. The minimization problem and the algorithm are 

presented in an abstract context (i.e., by axioms and without 

direct reference to any particular application such as switch- 

ing circuits) and are thus in a form applicable to many 

"covering problems". Two switching theory applications of the 

algorithm are sketched at the end of the paper. 

Chapter IV, "A Calculus of a-objects, is a description 

of a very abstract and axiomatic treatment of switching theory, 

independent of set theory or any other foundational approach. 

There are two basic operations called catenation and "angle- 

bracketingi1. 0 1, x, o are primitive objects. Relations, 

functions, circuits and singular complexes are described in 

terms of these operations. An algorithm is given for analyzing 

acyclic logic circuits. 

- 

A future area for research is the connection between 

a-objects and F-notation described in Chapter 11. 

Chapter V, "An APL Version of MOM the Multiple Ouput 
2-Level Minimization Program", describes an APL-implementation 

of the 2-level MOM program. It follows and conforms to and is 

based upon the F-notation version described in Chapter 11. 

Several examples of use of this program are included. 



. 
SPACE APPLICATIONS O F  A MINIMIZATION ALGORITHM 

J. P. Roth 

IBM Watson Research Center 
Yorktown Heights, New York 

M. Per lman 

Jet  Propulsion Laboratory 
California Institute of Technology 

P as adena, California 

ABSTRACT: This paper is a detailed account of the 
application of an IBM 7094 minimization program to 
several  design problems at NASA's Jet  Propulsion 
Laboratory of the California Institute of Technology. 
Specifically these applications a re  concerned with 
the design of a curve function generator for a mass 
spectrometer for a proposed Mars probe and the 1 
design of autonomous shift registers with linear and 
nonlinear feedback, used for classification of binary 
sequences and counting tasks for spacecraft scientific 
data processing. 
a r e  first described, followed by a description of the 
applications. 

The algorithm and program used 
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Introduction: 

synthesis of switching systems is not a new topic but an 

account in some detail of successful application of these pro- 

The use of minimization algorithms in the 

grams to practical problems I s  of considerable interest. 

Most of the problems discussed in this paper a re  concerned 

with space applications at the Jet  Propulsion Laboratory at 

California Institute of Technology of a program MIN6 of the 

extraction algorithm [R58] although one of these was connected 

with the design of the IBM 704 (using an early versionMIN 4). 

Other IBM applications a re  given elsewhere, e. g. on S/ 360[R65]. 

The problems discussed of the applications a re  connected ' 

with the design of the curve function generator for a mass-  

spectrometer for a proposed Mars probe and the design of 

autonomous shift registers with linear and nonlinear logic 

feedback, used for classification of binary sequences and 

counting tasks for spacecraft scientific data processing. 
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The IBM application used MIN4 to simplify a code 

translator, converting standard XBM six-bit BCD code to a 

paper tape code of five bits, with an approximately 50% 

cost reduction over the original solution. 

1. Description of Logic Minimization Problem plus Notation. 

A logic circuit of two levels is shown in  the figure below. 

It consists of a level of AND-blocks followed by a level of OR- 

blocks. 

lowed by a level of NOR-blocks: 

It could equally well be a level of NAND blocks fol- 

1 1  

Figure 1. A 2-Level AND/OR Circuit Together With Its 
Singular Cover. 
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The programs and algorithms may be interpreted for any pair 

of "opposite'1 vertex functions. 

"singular cover" which describes the behavior of the circuit; 

the first row for example specifies the on-array, specifying' 

that when lines 1 and 2 a re  1, the a-output is 1. The absence. 

Below the circuit is a 

of symbols in the other columns indicates that the relationship 

is independent of the values of the llinput-variables" 3, 4 and 

5 and that, for input-lines 1 and 2 equal to 1, the other outputs, 

b and c a re  not determined. 

made of the other rows. 

A similar interpretation is to be 

This is a brief description of the singular cover notation 

for describing the behavior of 2-level circuits. 

2. Brief Description of Minimization Problem. 

Actually, the minimization problem is more general in 

that so-called If  Dontr-Care" cor,ditions a re  involved; in this 

event there would be other Ifcubesf' adjoined to the cover: the 

problem is to find a se t  of.cubes from the l rcaresl l  and the 

"donlt-cares11 which ''cover'' the cares and at the same time 

have a minimum ~ lcos t '~ ,  the cost being some well-defined 

function of each cover. 

of ones and zeros used in the cover, both for their input and 

output coordinates. 

tional realization as in Fig. 1 and its hardware cost. 

One such cost is the sum of the number 

The 11costIl relates the cover to the func- 

A related paper [RW68] gives an algorithm for this ''multiple- 

output problem" but a program for this algorithm has not yet 

been made. A program MIN6 for an approximation to this 

minimization problem has received considerable usage within 

IBM and recently by the Jet Propulsion Laboratory o f  the 



California Institute of Technology. 

paper to describe in some detail these applications, which 

have some considerable technical importance in themselves. 

(MP to furnish description of JPL problems '"in capsule". ) . 

It is the purpose of this 

The program is based on the extraction algorithm [R59] 

in i ts  original single-output form, utilizing the Muller-output 

coding to adapt it to the several-output problem. 

the solutions from such an encoding does not yield a minimum 

as simple examples show. Indeed the program, as  described 

in  the next section, has certain features which allow i t  to be 

run in an approximate-minimum form (for purposes of speed 

and computational feasibility). Consequently for the applica- 

tions, usually in multiple-output form, a minimum is not 

ordinarily obtained, but a ''sufficiently1' good approximation to 

a minimum is obtained. 

In general 

3. The Extraction Algorithm. 

The extraction algorithm is a means for finding a minimum 

to the covering problem. 

and is adapted in the program by means of the Muller coding 

[M54], i n  the following way. 

It works for the single output case, 

.4 

1. The pr ime cubes (prime implicants) Z are computed 

by the # algorithm [ERW 611. 

2. The extremals E (members of the core) a r e  computed 

by the #product [R 581.. 

3. If E is nonempty, E # <, then E is "extracted" 

from Z to form Z ,  Z = Z - E, and removed from 

the care  conditions C, C c C # E.  

I .  * e  
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3. 1 The "less-than" operation is then performed to remove 

cubes u which can be replaced in any minimum cover by 

other cubes v. Precisely, u is "less-than" v, u < v, i f  

cost (u) > cost (v) and v covers of the remaining care . 
conditions, C # E, at  least  a s  much as  u, 

- 

3. 2 A new extraction problem is formed consisting of the 

original C of care conditions diminished by the extremals E 

which have been computed in  2 ; i f  C # E denotes this reduced 

ensemble of care conditions, then a new se t  of extremals- 

call them E - is  computed according to 2, etc.. The 

rlsolutionfl S is then the ~ l s u m l f  of the E's so computed, 

- 
2 

3. 3 I f  at any stage of the computation the "newly computed" 

ens em ble of e xt r em als ''vanis he s 

procedure B is invoked which forces a solution Sz by on the 

one hand selecting a cube z (by some elaborate process) and 

treating it as i f  it were an extrema1 and on the other "rejecting" 

z (as i f  it were < some other cube), to obtain a solution Sz , 

That which has lower cost constitutes a minimum for the 

original problem. 

- 
Ei = 0 ,  then a branch 

- 

This is a slightly updated version of the programmed 

algorithm MIN6, whose use and some applications thereof is 

de fined below, 



4. THE MIN-6 ?RC?G1<4Pl 

4 1 Background 

The MTN-6 progrm was written f o r  the IBY 7094 general pur- 

pose cor;lputer t o  deteminz a K-cover of L of minimum or a?prosbate 

minimn cost. K denotes a cubical complex containing the subcoqlex. L.  

The vertices N = K - L are the Llnspecifiecl Or don't care vertices.  

program is based on J. Paul Roth's extractifin algorithm r R 5 4  f o r  single- 

output Boolean functions. 

to an imaginary single-output pmblem by V i l e r  coding. The extraction 

a l g o r i t h  is  then applied. 

single output function yields the simultaneous mininization of the 
7 

Boolea.. fwct ions  representing the o r i g i m l  r;lu9ti-oLitpt pr~3lem [Rl54; . 
A K-cover of L is m y  collection crf m>es C sach that each vertex of L 

is  coritaine'd i n  some aibe of C. 

required i n  a two-level AX9-OR hplemental~on. 

binational logic networks u t i l i z i n g  large scale integrated ciraiits 

(LSI) , cost can be defined as the number of intercormtxtions. 

The PIIN-6 program consists of three steps. 

The 

The ml t i -ou tp i t  problex is f i r s t  cniverted 

See Section 3.  The mininization of the 

Cost is defined 2s t k  number of diodzs 

When ccasisering com- 

k r i n g  step 1 

the input data is r e d  and .m array of  prime cubes is dprived. 

z of K is a prime cdbe if  Siz = jJ fo r  a l l  i. 

to  a p r im i q l i c a n t  i n  Quine's {emtinology \hen K = L.  

of L of minimum cost is  contained in  the set of grime cubes. 

prime cukes arc  selected t o  fom a K-cover of L of n in imm cost. D u i n g  

step 3 a solution (or severs1 soluti-ons 3if equal or x a r  equal cost! sre 

in-ittsr! out. 

3. m5e 

A prine cube correspmk 

Every K-covm 

In s tep 2 
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The b f N - 6  options f a l l  into I-NO categorics. These arc 

( theore's ically) minimumcost so1utior.s and approximztc minimtun-cost 

solutions. The difference is i n  the perfomcu;ce of step 1. For 

minimum-cost s o l u t i o ~ s  the en t i re  array of prime cubes is derived 

by means of the "sharp" algorithm L R S d .  For approximate minimuin- 

cost solutions only a portion of the prime cubes is derivcd fo r  'a 

r- 

giver, problem by mems of the "coface" algorithm 1 '  ,R59;. In larger 

problems the sharp algorithm can resu l t  i n  overflow in core o r  t he  

fa i lure  tc; f ind a solution i n  a rezsonable running tine. Since the 

coface algorithm derives many fewer p r i m  cubes, it requires less 

running time and has cmsiderably less chance fo r  overflow than thc 

sharp algorithm. 

selection of 3 subset of  prime cubes is mzde n m s  much f a s t e r  after 

Furdiemore m d  more importantly, step 2 where the 

cofacing than after sharping. 

There is no known nethod f o r  predicting the running time 

If experience fo r  e i ther  category of opticns f o r  a giiren problem. 

with a given type of problem indicates tha t  no more thai three solu- 

t ions are extracted i n  a reasonable t tne  by shzqing,  then cofacing 

should be used. 

4.2 The Sharp Algorithm 

Given the cubes u = (yl, u i ,  . . . , un) and v = fv,, v2, . . , 
VJ , the sharp product u 8 v are the vertices of u that  are not i n  v. 

The resul t ing set of vertices 2re represented as a c&e o: the Lmion of 

cubes of largest possible dimnsion. 

a cube is an n-tuple where ea& component is a 0, 1, or X. 

sion of  a cube is equal t o  the nmber of X's (frec ccordinxtes). 

cost of a cube is equal t o  n ninus the number nE X's ( i . e . ,  the number 

The coordinate representation of 

The dimn- 

The 



of bound coorclinafcs) . The #-product of coordinates appears i n  TAME 11 - 1 

1 '  y 2 Z 

X 1 0. z 
I 

TABLE 4-1' THE W-PRODUCT OF COORDINATES 

The sharp prodmt u v is determined from the #-product 

of coordinates as follows: 

u if ui # vi = y fo r  any i 

where ui # v = 0: = 0 or 1 i i 

In the third case, the logical s m n t i o r i  raris over a l l  \d-mx 

u. /! vi = 0 or  1. 

EYAWLI-: 1 
1 

a. XXX if 01X = 1-XX + XOX 

b, no # xx1 = n o  
c. lox ff 1xx = pI 

The sharp product is non-comxitative md non-associative. 

however satisfy the following distributi-,.pe k w  

It does 

(u + v) iY zv' = (u i+ w) f (v a If) 

Other properties follow from ths definition: 

1, 

2. u f v C u  

3. 

u # v = fl if u C v  

(u # v> a w = (u I/ IC) : v 
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The sharp algsritl-iin-, is used i n  MTN-6 t o  derive 311 the 

p r i m  cubcs of the oil or  off array. 

and minimize of€ [conjunctive miniimm) are MIN-6 options h i c h  f a l l  

into the category of minimum-cost solutions. If the on array (input 

cubes which resul t  i n  a 1 o u t p t )  are supplied t o  the computer a?d a 

minimize on is requested, the sharp algorithm is used twice. 

the on array is sharped from the universal cube. 

p r i m  cubes of the off srray. 

then sharped frmn the universal cube t o  obtain the prim cubes of the 

on array. The double sliarp routine can be avoided by giving the com- 

Minimizc on (disjunctive minimum) 

' 

F i r s t  

This yields the 

The prime cubes of "he off array are 

puter the off array (on array) ither, requesting a mininize on (minimize 

off] option. 

EXAMPLE 2 

Given 

A B  C 

0 0 0  

0 0 1  

0 1 0  

0 1 1  

1 0 0  

1 0 1  

1 1 0  

1 1 1  

f (L4, B, C) 

0 

1 

0 

1 

0 

0 

1 

1 

To realize a minimize on solution the off  array 1000, 010, 100, lO:> 

is  sharped from the universal cube XXX as follows: 

( ( ( X X  H 009) if 010) /# loo! a 101 

1.  m ii 000 = 1u + x1x + m1 
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2 .  (1xx + x1x + 3x1) # 010 = 1xx -t. 11x + x11 + a1 - 

= 1xx 4. xx1 
(la + xx1) f 100 = 11x + 1'U + xxl 

= 11x + xx1 
( 1 1 X  + xxl) # 101 = 11x + ox1 + xl1 

3. 

4. 

ille prime cubes of the on array are' ( 1 1 X ,  0x1, X l l , .  

s t ep  2 1 1 X  c 1XX and X11 c xx1. 

Property 1 of the sharp product can be used to  determine whether a 

cube is contained in  a higher dimensional one. 

a <-operation where the cube of lower dimension (a less than) is dis-  

carded since it is  contained i n  one of higher dimmsion (hence, of 

lower cost). 

4 . 3  The Coface Algorithm 

Note tha t  in  

Similarly, i n  step 3,  1x1 c xX1. 

This  corresponds t o  

Both the on and off array must be supplied to  the computer 

before cofacing. 

increased as much as possible without overlapping the  off  array. 

procedure is t o  replace each cube of  the on array with a prime d e ,  

The dimension of each cube i n  the on array is 

The 

vhich cogtains it, but does not contain any vertices of the off array. 

Essentially the f i rs t  bound coordinate of a given cube in  the on array 

is replaced by a free coordinate. The higher dimensional cube is then 

tested t o  see i f  it beloflgs to the K complex. 

cube is replaced by the higher dimemional one. 

each of the remaining bound coordinates. 

If it does, the given 

This is repeated fo r  

The result ing atbe will 

always be a prime cube. In general, only 2 portion of a l l  possible 

prime cubes are derived by t h i s  method and any c w e r  selected from 

these primc cubes will not be a mininiun-cost cover. 

procedure  as explained i n  terms of a scccession of face and coface 

Historically, this 
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operations ‘R59I hence the term cofacing was used. The copacing 

algoritllrii can be implemented with sharping. 

from a given cu5e i n  the on array after i ts  dimension has been incrcn6nted. 

1 1’ - 
The off array is sharped 

The given cube w i l l  be unaltered i f  it does not contain any vertex of  the 

off array. 

EXAMPLE 3 

Given 

A B C  f (A, B, C) 

0 0 0  1 

0 0 1  1 

0 1 0  0 

0 1 1  0 

1 0 0  1 

1 0 1  - 

1 1 0  i 

1 1 1  0 

The dash (-) denotes an unspecified o r  don’t care condition. 

and off arrays are l i s t e d  as follows: 

ON ARRAY OFF ARRAY 

0 0 0  0 1 0  

0 0 1  0. 1 1 

1 0 0  1 1 1  

1 1 0  

Tne or, 

Tests fo r  0 0 0 

((XOO ii 101) # 011) i? 111 = xoo 
xxo # 013 # no 
((XOX # 010) # C11) /! 111 = xcx 
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Thcreforc 090 is ieplaccd with >(OX, a prime a tbc  contained in  K. 

4.4 Cornputation of Estrcmals ,md Less Thans 

A prime cube z. of K is ternicd an L-extrema1 [R59] i f  it con; 
1 

ta ins  a vertex of L not contained i n  any other prime cube of K. The s e t  

E of a l l  L-extremals of K m u s t  be contained i n  any minimum-cost cover of 

L .  When K = L, E corresponds t o  the "core" i n  Quine's teiminology. The 

removal of extremals reduces the nmher of prime mbes which must be 

selected t o  form a cover. Let Z equal the prime cubes from which a K 

cover of L is t o  be selected. Sharping is  performed to  determine whether 

z. is  an extremal. The prime cube zi is an extremal if and only 
1 

z # ' ( Z  - Zi) # fl i 
After identifying and storing the extremals, the remaining p r i m  

if 

cubes 

are pa r t i a l ly  ordered according to  dimension. 

less than) prime cube contained i n  one of higher (or equal) dimension i s  

discarded. The remaining prime cubes are subjected t o  the s m e  process 

since the removal of less-thans may introduce mother s e t  of extremals. 

Each <-maximal ( i .  e. , 

The process fo r  some problems 

cubes is empty. In th i s  case 

extremals {E1, EZ,  . . ., ErI 

continues u n t i l  the remaining set of prime 

the union of a l l  the ordered sets of 

is a unique minimum-ccst K-cover of L.  

For many problems, however, a point is reached where all of 

the remaining prime cubes are maximal under the <-operation ( i .e . ,  none 

are less thans) and none are extrernals ( i . e . ,  each remainirig vertex is  

covered by more than one p r h e  cube). When both of these conditions hold 

(Kr, Lr) is terned irreducible. r 
removing i* ordered extremals Ei and applying the <-operation fo r  a l l  

i - < t - 1. 

I< i s  the coxplex resulting from alteniatc?ly 

Lr is a subcomplex of Kr. If K = L and (K, L) is irreducible, the 
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cuibical coriiplcx rcpresents a cyclic Boolean function. Whenever a 

point is rcached whcre (Kr, Lr) is  irreducible, the  MIN-6 Drogram 

goes into a branching mode. 

4.5  Branching Yode 

- 

, 

Branching s t a r t s  with a selection of a cube u i n  Kr. F i r s t  

n is treated as i f  it were an extremal. The <-operation is applied t o  

IKr - ul .  

extraction algorithm continues. 

a K-cover of L w i l l  be found which coEtains u. 

and stored. 

irreducible. Then u is treated as i f  it were a less than some other 

cube i n  Kr' 

extraction algorithm continues. 

a K-cover of L w i l l  be found which does not contain u. Its cost is  

This subcover is then tested f o r  new extremals and the 

If no additional branch points ar ise ,  

Its cost is computed 

The program returns t o  the branch point where (Kr, Lr) is 

This subcover is then tested for  new extremals and the 

NG additional branch points ar ise  and 

computed and coxpared with t ha t  of the solution containing u. The 

lower cost solution (or e i ther  one i f  the costs are equal) is a minimum 

cost solution. 

For many problems more t l ian one branch point appears i n  

searching for  a minimum-cost solution. A t  each branch point, a "best" 

cube is selected and put into a solution buildup as an extremal. This 

continues u n t i l  a solution is  reached. 

nodes nay be diagramed as end points of a branch of a t ree .  

Successive brvlch points o r  

After a 

solution and i ts  cost i s  conrputed and stored, the pro.gram returns to  

the l a s t  branch point. The "best" cube selected a t  th i s  p o i ~ t  is then 

treated as a less t h m  i n  forming another solution i n  which th i s  "best" 

cube is not included. If the cost of this  solution i s  chcqxr  t b m  (or 
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the same as) the previous one, it is. retained as a currently c?icapest 

solution (CCS). The program continues t o  retrace branches to  a previous 

level of branching, return on an alternate branch, and proceed toward'a 

new solution. 

that  the pa'& can only lead to  a more costly solution than the CCS. 

Branch tracing is interrupted when it has been detemmined 

A 

branching t ree  is  i l lus t ra ted  in  Fig. IV-1. 

's 101 L l l O  '& 111 

1110 

11100 0 ,~ . 11101 

Figure 4-1. A Min-6 Branching Tree. 

The cost, branch nmber, brmch level,  ard a binary sequence 

which identifies the location i n  the tree representation of brarching 

of every CCS is m i t t e n  out. 

t o  the number of terminal brLmches 

The branch number o f  a solution refers 

read from right t o  l e f t  up t o  and 
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including the CCS it identifies.  

solution. 

sequence. 

Each terminal is associated wi th  a 
- 

Thc brancli level is equal t o  the number of b i t s  in  the binar,. 

A t  each branch point a b i t  is added to  the right of a binar); 

sequence. A 1 (0) is added i f  the "best" cube a t  the previous branch 

point was treated as an extrema1 (less thzn). 

t ion associatedwith 100 has a branch number 6 and a branch level 3. 

From Fig. 4-1, the solu- 

The selection of a cube when branching should be cne that:  

1. minimizes the to t a l  extraction time and 

2 .  lowers the cost a t  which subsequent branches can 

be terminated. 

A a h e  that  yields a large number of new prime cubes fo r  exclusion o r  

inclusion i n  a solution sa t i s f i e s  par t  1. If th i s  leads to  a low-cost 

solution a t  the end of the branch being traced, part  2 is sat isf ied.  

Selection c r i t e r i a  is  a current research problen. 

MIN-6 is implemented t o  se lec t  a cube whose "crownm" has the 

The crown of a given cube is defined as the sub- greatest Climension. 

arbe of the smallest dimension tllat contains a l l  the "care" vertices of 

the given cube. 



5. DESCRIPTIOYS OF MINIMIZED DESIGNS 

5.1 Feedback Shif t  Register Code Translator 

A generalized feedback s h i f t  reg is te r  (FSR) appcars i n  
th Fig. 5-1. 

a t  clock pulse interval (CPI) k is denoted as ak i. The b i t  being 

fed back during CPI k is a Boolean function of the s t a t e s  of the r 

The content of the i- stage ( a two-state memory element) 

stages . Hence 

t h  t h  The s t a t e  of the i- stage a t  CPI k becomes the s t a t e  of the ( i  + 1)- 

stage a t  CPI k + 1. 

- 
ak-i - a(k + 1) - (i + 1) 

t h  The i n i t i a l  s t a t e  0-f the i- stage is represented as a where k = 0. -i 
The FSR is in a subclass of autonomous f i n i t e  s t a t e  machines. 

.. 
The sequence {ak} is  periodic and the length of the period 2 is  always 

dependent upon the feedback function and may depend upon the i n i t i a l  

state of the regis ter .  

EXAMPLE 5-1 

- ak - ak-l ak-3 * a i -4  

where (0)  denotes sum mcdulo 2 ( i  .e., EXCLUSIVE-OR) and (') d-n te  

complementation. 

Successive s t a t e s  ak-l ak-2 ake3 ak-4 and ak are tabulated as follows: 

Logical mu1 t ip l ica t ion  is  denoted by juxtapositicn. 
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ak- 1 ‘k-2 %-3 ak’-4 ak , k  

0 0 0 0 0 1 
1 1 0 0 0 1 

0 0 1 1 0 1 
1 1 0 1 1 1 
2 1 1 0 1 * o  

0 1 1 1 1 1 
4 The feedback function decomposes the 2 states into branchless cycles 

of length 1, 3, 5, and 7 as shown in the s t a t e  diagram of Fig. 5-2. 

States are labeled &th the i r  decimal equivalents. 

..- 

. 

FIG. 5-2 FSR STATE DIAGRAM FOR ak = ak-l ak-3 8 
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A necessary md sufficient condition for  d i s t inc t  s ta tes  t o  have 

d is t inc t  successors iG-67j is that  ak be of the form sham i n  5.2. 
r 

In example 5.2 

and branchless cycles resul t .  
- 

The FSR has numerous application i n  addition to  serving as 

a mathematical model for  candoin number generation, f i n i t e  s t a t e  machines, 

and Markovian processes [ G-671. Applications include counting, scaling, 

error-correcting code generation and detection, ranging, prescribed 

sequence generation, and single-valued curve generation. 
ZT Among the 2 switching functions of r Boolean variables, 

there are Z*4(Zr-l)/r l i m a r  functions which resul t  in  cycles of length 

2r-1. [g(n), the Euler-phi-function, is the number of integers no 

greater than n that are relatively prime t o  n ]  . These are termed 

maximal-length cycles. A switching function which can be expressed as 

f(xl, x2, * . ., xn, = cg @ c x e ’ ‘ e cnxn (5.3) 1 1  

is  l inear  &ere ci = 0 o r  1 fo r  0 - -  < i < n. 

is l inear ,  a necessary but not sufficient condition fo r  realizing nzxi- 

mal-length cycles is that  the content of an even number of stages is fed 

When the feedback function 

back. For many values of r,  as few as two stages are required. 

tap l inear  logic feedback for  an r-stage FSR yields the most efficient 

Two- 

FSR (cycle length per cost of combinational logic) in terms of imple- 

mentation. 

also has useful pseudo-randomness characteristics including a trio-level 

The maximal-length sequence associated with a linear FSR 

autocorrelation property 1 ’  ,G-67 . The simplicity oE t!ie two- tap l inear 
* 
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FSR, i t s  se r i a l  character, and synchronous behavior makes it attractive 

for science data processing tasks in  interplanetary spacecraft. 

Successive s ta tes  do not correspond to  l inearly increasing , 

(or decreasing) binary numbers. 

FSR can be used to  decode or  translate a count. 

a para l le l  translation is  required i n  the interest  of speed. 

analytical solution has been found for  transforming successive s ta tes  

Serial  techniques involving another 

In many cases, however, , 

No 

of an FSR with long cycle lengths t o  or6ered binary numbers which are 

i n  a one- to-one correspondence. 

MIN-6 enables a logical designer to  minimize a two-level 

AND-OR diode matrix which serves t o  translate an FSR code t o  a binary 

number. 

EXAMPLE 5.2 

This is  i l lus t ra ted  i n  example 5.2. 

Given a 4 stage FSR with the following feedback f a c t i o n :  

- ak - ak-l e ak-4 

Every non zero s t a t e  lies i n  a maximal-length cycle of 

length 15. 

a binary 0. 

1 through 1 4  respectively. 

Let the i n i t i a l  s t a t e  a-1 a-2 a-3 a-4 of 1 1 O 6 represent 

Successive s ta tes  are to represent the binary numbers from 

"he FSR s t a t e  0 0 0 0 is singular (i.e., 

lies in  a cycle of length 1) and is treated as a "don't care." The 

MIN-6 solution of Example 5.2 apgears in Fig.  5.2. 

reduction of the actual off-l ine printout of 5 pages. 

Fig. 5.2 is a photo 

The c,z?or,ical 

input array (upper l e f t )  appears on page 1. The canonical input array 

option defaults to  a minimize on solution unless minimize off is specified. 

The input cubes are supplied t o  the computer i n  octal  whereas the output 

cubes are supplied in  binary. Note that the d ig i t  2 represents a dcn ' t  



T E S T  2 FSR TJ B I Y A i Y  T t A N S L A T J P  I U S  1100 

C A Y O Y I C A L  l N P U 1  A R l d Y  
I Y P J T S  

14  1100 
16 1110 
17 1111 
37 0111 
13 1011 
35 0101 
12 1010 
15 1101 
36 O l A O  
33 0011 
11 1031 
0 4  0100 
32 0010 
31 0031 
10 1000 

, 00 0030 
E Y D  OF AA7AY 

J U T P U l S  
0000 

’ 0001 

J U T P U l S  
0000 

’ 0001 
0010 

1001 
1010 
1011 
1100 ’ 

2222 
Ki 1 

P t J B L E ’ 1  i A S  6 I N P U T S  AYU 4 3 U l P J T S  

3FF  4 R 7 A 7  

4 R t A Y  4 A S  32 CUHES 3 F  COST 

1100 
1110 
1111 
0111 
1011 
0101 
1010 
1101 
1100 
1113 
1111 
0111 
0110 
0011 
A001 
0100 
1 LOO 
1110 
loll 
0101 
0113 
001 1 
0010 
0001 
1103 
1111 
1011 
1313 
0110 
1001 

163 

1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
0100 
0100 
0100 
0100 
0100 
0100 
0100 
0100 
0010 
0010 
0010 
0010 
0010 
0010 
0010 
0010 
000 1 
0001 
0001 
0001 
0001 
000 1 
D O 0 1  
0001 

FIG. 5-2  

FSR (4-staqe) Code 
to  Binary Translator 

P U B L E ’ 1  i A b  4 I Y P U T S  A140 4 J U T P U T S  

D O I T  C A 3 L  AQRAY 

A i t A Y  4 a S  I CUBES JF COST 

1111 
EYO OF ARRAY 

I 1 JY A R I A Y  

49 E U J E S  

C U W L E l E  AZRAY MAS 23 CUBES JF C 3 S l  133 

E L I P S E J  11% AT S T I R 1  36 E X T R A E T I O Y  IS 3-511 

’B34YCHIN; H4S J C Z U U E O .  ELAPSED T I * E  IS 0.538 

I PtE-634Y:HIY; E X T Z L M A L S  - 6 CUBES r lEW4IY IY ;  

L A l E S T  S J L U T I O Y  H A S  12 CJBES JF E 3 S T  56 
E L A P S E 3  l I * E  IS 0.551 
wtavcw NJMYLR - I BKAXCH LEVEL - 4 

L 4 l E S T  S J L U T I O V  H A S  13 C J B t S  JF CJST 55 

t)RAYLM NJ f laES - 3 BKAYCH L E V E L  - 3 
113 

ELLPSEJ ~ I * E  I S  0 . 5 a ~  

I 3  

L 4 T E S T  S J L U T I O Y  A 4 5  13 CUBES JF C J S T  53  
E L A P S E D  T l Y E  IS 0.61b I BZAYCH NJNJE7 - ‘r BZAXCM L E V E L  - 2 
10 

L4rEs.r  s m r I o Y  HAS iz C J B ~ S  JF cosr 5 3  
ELAPSED 1 l Y E  I S  0.653 
t)<AYTH N J M d E P  - 5 E Z A Z C M  L E V E L  - 2 
01 

’44XLYUY Y U Y e t R  JF B R . A \ t I l k S  L E Y E L S  USE0 UPS 4 

k J q B E W  3 F  B R A h t H E S  T7ATE.U - ’ 6 

E X T ~ ~ T T I J N  r inE  - 3.158 

C O S T  OF S J L U T l 3 V  d i F J K E  RCMOVIY; aE3JVOANT 3 U T P J T  L I o i c S  - 
S U L U T I J Y  N J M a E 7  1 H1S 13 C J 3 E S  3F COST 53  

I Y * U T S  
1110 
2131 
1231 
1012 
0231 
Zlll 
1023 
0200 
Z O O 2  
0 2 2 1  
0022 
0220 
2020 
E N 3  3F A 3 R 4 Y  

a u r p u r s  
01 0001 
05 0101 
0 2  0010 
0 4  0109 
0 4  0100 
02 0010 
02 6010 
03 OCll 
13 lU00 
01 0001 
10 1000 
10 lOG0 
04 0100 

COST JF S O L U l l U Y  B E F O R E  REYOVIY; RtOUNDPNT OUTZUT L I N E S  - 
S O L U T ~  N)JL(BE.I z HAS 12 CJBES OF cosr 50  

I N P U T S  
1131 
1110 
2111 
0231 

1032 
0233 

1020 

E L L P S E D  l t l t  = 0.929 1 I Y t J l t S  

OUTPJTS 
07 0111 
01 0031 
02  0010 
3 4  0100 
0 2  0010 
12 1013 
33 0311 
3 4  OlGC 
01 0331 
10 1035 
13 1000 
0 4  0103 
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care coordinate. 

binary array. 

A preprocessor converts the input octal  array t o  a 

On page 2 (upper right)  the don't care array is separated 
~ 

out by the preprocessor. On pagc 3 (center lef t )  the Muller coded off 

array is determined by the preprocessor. 

actually being requested. 

Note tha t  a minimized on is  - 
Therefore, the off array is sharped from - 

the universal cube t o  generate the prime cubes of the on array. 

32 cubes with a cost  of 160 diodes in  the off array is associated with 

Muller coded off array. 

The 

The 4-input 4-output problem is hereafter treated as an 

imaginary 8-input 1-outpiit network. The input cube a-nd its associated 

Muller coded output cube are combined t o  form a vertex of eight 

coordinates. The Pllhrller transformation also introduces "don't care" 

vertices [M-66,. On page 4 (center r ight) ,  the number of cubes (23) 

and the i r  cost  (108 diodes) of the complete array is given. These 

represent a K-cover of L of the 8 - i n p t  l-output problem result ing 

from sharping the Muller coded off array from the Imiversal cube. 

1 
. a  

Elapsed times appearing i n  the printout are i n  minutes. The extraction 

algorithm, fo r  example, was applied 0.511 minutes a f te r  the problem was 

received. 

printed out. 

branches traced are noted. 

the four solutions found. 

2 requires one less cube o r  gate. 

The branching s ta tus  of each currently cheapest solution is  

The maximum number of branching levels and the nmber of 

Page 5 (bottom of Fig. 5-2) gives two of 

These are of equal cost. However, solution 

The to t a l  elapsed time was 0.929 

minutes of which 0.168 minutes was consumed by the extraction algorithm. 

Let xi correspond t o  ak-i. The output z1 z2 z3 z4 is the 

translation into binary of the FSR code represented by x1 xc2 x3 x4. 
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Solution 2 of example 5.2 is expressed algebraically as follows: 

J 

z 2 = x  x x ' x  + x ' x ' x  + x  x ' x  + x i x i  1 2 3 4  1 3 4  1 2 3  

z 3 = x  x 1 2 3 4  x ' x  + x  2 3 4  x x + x l x ; x ; + x l  x' 2 x'  3 + x i  x' x' 

z4 1 2 3 4  1 2 3 4  1 3 4  = X  x X ' X  + X  x x x ' + x ' x ' x ' + x ~ x ~  

The underlined terns are shared. The derivation of the 

simultaneously minimized functions from the minimized single func- 

t ion (after the Muller transformation) is detailed i n  [M-541. The 

second level of minimization is approxinate for many multiple output 

problems since the search fo r  a minimum-cost solution would require 

the generation of an unusually large number of  prime cubes a f t e r  Pbller 

coding [M-66]. The cost of the i n p t s  t o  the first level of gating is 

minimized and any redundancy i n  the i r  outputs is removeh when formkg 

the second level of gating. 

and a f t e r  removing redundant output l ines from their  outputs. 

Fig. 5-2. 

The MIN-6 solutions gives the cost before 

See 

Solutions 1 and 2. of Example 5.2 have a cost of 50 di0de.s. 

The canonical form requires 88 diodes. 

of 43%. 

This represents a reduction 

EXAMPLE 5-3 

An FSR t o  binary translator f0r.a 5-stage maximal lengtF, FSR 

The feedback function was was minimized with MIN-6. 

ak = ak-2 ak-5 

Every non-zero s t a t e  l i e s  in  a maximal-length cycle of length 31. 

t o t a l  of 31 s t a t e  assi,ments were minimized with the coface a?goritlim. 

Each of the 31 cyclic permutations of the FSR s ta tes  xcre put  i n t o  3 

A 



TEST 11 FSS ThAFISLAT3R 1h.S 01101 

ON ARRAY 

129 :USES 

C O I P L E T E  ARRAY HAS 66 CUBES 3F COST 316 

ELAPSED 1 l M E  AT S T A H 1  OF E X T K A T T I U N  IS 0.585 

BRANCHIN; HAS OCZURRED. ELAPSED T I R E  IS 0.669 

PRE-BR4N:HIhS E X T k F R A L S  - 12 C U B t S  K t M A I U I Y G  - 
L A T E S T  SOLUTIOY HAS 26 CUBES OF COST 143 
E L A P S E 0  T l M C  I S  0.737 
BKANCH N3MBE3 - 1 BRANCH L E V t L  - 7 
1111111 

L A T E S T  SJLUTIOV d A S  25 CUBES !IF COS1 143 
ELAPSE0 T I S t  IS 0.772 
BRANCH NUPBE.3 - 2 F!RA?KH L E V E L  - 7 
111 11 10 

L A T E S T  S J L U T I U Y  H 4 S  25 CUBES OF COST 143 
ELAPSED T I M E  IS 0.818 
BRANCH NJHBE.3 - 9 HHANCH L F V t L  - 7 
1110101 

LATEST SXUTIOY HAS 26 CURES o r  COST 140 
E L A P S E 0  7 1 %  IS 0.930 
8RLNZ.H NUNBE3 - 26 tJRANCH L t V L L  - 4 
1010 

MAXIXUY YUYIiER tIF h4AfJZt I INC L E V E L S  USED WAS 13 

NUYBER OF BRANCHES T K A i i O  - 152 

EXTHACT13N T I h E  - 1.255 

32 

S U L U T I O N  NUMBEX 

I N P U T S  
11201 
02!300 
12101 
102 11 
00102 
01210 
0020l 
11312 
10121 
21001 
11112 
20100 
003 12 
00210 
01120 
21011 
10112 
12021 
12200 
20121 
02002 
01212 
20020 
12121 
12102 
10202 
E N D  CF AXRAY 

E L 4 3 S E D  T I M E  = 

1 HAS 26 CJHES OF COST 132  

OUTPUTS 
12 
Ob 
20 
10 
02 
20 
04 
32 
20 

:- 01 
O b  
22 
02 
01 
14 
06 
15 
02 
04 
11 
20 
10 
20 
01 
01 
01 

2.120 n i r m t )  

01010 
00110 
loco0 
01000 
000 10 
10000 
00100 
11010 
1ouoo 
0000 1 
00110 
10010 
06010 
00001 
01100 
06110 
01101 
000112 
00100 
01001 
10000 
01000 
10000 
OGOOL 
00001 
00001 

FIG. 5-3 

FSR (5-stage) Code t o  
Binary Translator - 
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one-to-one correspondence with the 5 place bins+ nunibers from 0 0 0 0 0 

through 1 1 1 1 0. The canonical form for each assignment consists of 

230 diodes. 

35% were rerun with the sharp algorithm. 

c 

Those assi,anments which yielded a reduction of more thm 

The assignment having 0 1 1 0 1 as the i n i t i a l  s t a t e  yielded 

the highest reduction, namely 42.6%. See Fig. 5-3. 



5.2 Prescribed sequence Generator 

Serial. data cmanating from a d ig i t a l  data processor i n  a 

spacecraft are divided in to  blocks o r  frames. Binary sequences are 

inserted t o  identify the beginning of a data frame. 

Every n-b i t  sequence which is  subperiod free can be char- 

acterized as a binary (n, r) ring sequence. 

ordered cycle of n d is t inc t  r - b i t  subsequences. 

yields n d is t inc t  subsequences may be used. 

The (n, r )  BRS is  an 

Any value of r which 

The Necessarily 2' - > n. 

sequence 

a4 a3 a2 1 aO a 

0 0 0 1 0 1 

is represented as a (6, 4) ,  (6, 5) , (6, 6) and (6, 7 )  binary ring sequence 

(BRS) i n  Table 5-1. 

(6, 4) (6, 5) (6, 6) . (6: 7 )  

0 0 0 1  0 0 0 1 ~ 0  0 0 0 1 0 1  0 0 0 1 0 1 0  

1 0 0 0  1 0 0 0 1  1 0 0 0 1 0  1 0 0 0 1 0 1  

0 1 0 0  0 1 0 0 0  0 1 0 0 0 1  0 1 0 0 0 1 0  

1 0 1 0  1 0 1 0 0  1 0 1 0 0 0  1 0 1 0 0 0 1  

0 1 0 1  0 1 0 1 0  0 1 0 1 0 0  0 1 0 1 0 0 0  

0 0 1 0  0 0 1 0 1  0 0 1 0 1 0  0 0 1 0 1 0 0  

Table 5-1 BRS Representations of 000101 

A (6, 3) BRS characterization does not ex is t  f o r  000101 even though 

z3 > 6 .  

in  the ring. 

pond t o  n successive r - b i t  subsequences ir, the (n, r) B E .  

This is  due t o  the double appearance of the subsequence 010 

Successive states of an r-stage FSR can be made t o  corres- 

The nininun 

value of 1- which diaracterizes an n-place subperiod free sequence as ILI? 
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(n, r )  BRS f a l l s  i n  the range of values expressed by 5.3. 

The bracketed term denotes the nearest integer which is  less than 

logz n. 

-- -- 

A proof is given i n  CY63 of the existence of (n, r )  BRSs 

f o r  any r and n 5 2'. If only the length n i s  specified one may be . 

found with a BRS characterization where r has the. smallest possible 

value which sa t i s f i e s  the hequa l i t i e s  of: 5.4. 

A l l  n -b i t  subperiod f ree  sequences f o r  1 < n - < 9 are classified accord- 

ing t o  the feedback function of the i r  (n, r min) BRS generators i n  

A constructive proof appears i n  r - l  I G67 showing that the l inear 
I 

feedback function of an r-stage maximal length FSR can be altered t o  
r realize any cycle length from 1 t o  2 . 

sequence, however, is fixed. In general, an altered maximal-length 

sequence must be transformed t o  the desired sequence. 

by an r x 1 AND-OR matrix which translates 11 successive r - b i t  s ta tes  

The structure of the resultirig 

This can be dom 

t o  the desired sequence of length E. Note that  sequences with sub- 

periods can also be derived i n  th i s  manner. 

When designing a prescribed sequence generator, (n, r )  BRS 

generation can be compared on the basis of overall cost f o r  various 

values of r. 

decision elements (i .e., combinational logic) . 
Overall cost includes cost of merr,ory elements as well as 

These results can then 

be contrasted with a maximal-length FSR generator altered, i f  necessaxy, 
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t o  cyclc through n successive states each of which is transfonncd t o  

a single b i t  i n  the desired sequence. These steps are i l lus t ra ted  i n  

the following example. 

EXAMPLE 5-4. 

The sequence 

0 1 0 0 0 1 0 1 1 1  €akl 

9 8 7 6 5 4 3 2 1 0  k 

is t o  be generated. 

The minimized feedback functions f o r  a (10, 4) and a (10, 5) BRS 

The (n, rmin ) corresponding t o  {ak) is (10, 4) 

generator are determined from Table 5-2 .  

ak-l ak-2 %-3 ak-4 ak-l ak-2 ak-3 %-4 ak-5 ak 

0 0 1 0 
1 1 0 1 
2 1 1 0 
3 1 1 1 
4 Q 1 1 
5 1 0 1 
6 0 1 0 
7 0 0 1 
8 0 0 0 

9 1 0 0 

0 
0 
1 
0 
1 
1 
1 
0 
1 
0 

0 1 0 0 0 
1 0 1 0 0 
1 1 0 1 0 
1 1 1 0 1 
0 1 1 1 0 
1. 0 1 1 1 
0 1 0 1 1 
0 0 1 0 1 
0 0 0 I 0 
1 0 0 0 1 

Table 5-2 State Tables f o r  a 

(10, 4) and a (10; 5) BRS 

Generator f o r  0100010111 

1 
1 
1 
0 
f 
0 
0 

0 
1 
0 

Unused entr ies  are t reated as don't cares. 
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(10, 4) BRS generator 

I I I 1 
I 

ak - ak-l ak-2 ak-3 + ak-l ak-2 ak-3 

I I 

+ ak-2 ak-3 ak-4 + ak-l ak-2 ak-4 

I 
+ ak-l ak-2 ak-3 a k-4 

cost 56 + 21y 

(10, 5) BRS generator 
I 

ak = %-5 

cost 56 + oy 

(The reader may verify that branches occur i n  the s ta tes  of the (10, 4) 

BRS and the 1111 s t a t e  is singular.) 

denoted as 6 .  

a cost y equal t o  the nunber of diodes. 

Thc cost of a memory element is 

The decisicn element is assumed t o  be a diode gate with 

The costs of  the (10, 4) arld 

the (10, 5) B S  generators are equal when 

56 = 46 + 21y or  6/y = 2 1  

The feedback function 
1 

bk = bk-l bk-4 bk-l bk-2 bk-3 

has a major cycle of length 10. The maximal-length q 

with bk-3 8 bk-4 is shortened by skipping 5 states.  

'k- 4 

:le 15 ciated 

The nonlinear t e m  
1 

causes the s t a t e  0111 t o  be succeeded by 0011 bk-l bk-2 bk-3 bk-4 
instead of 1011 by inverting the b i t  that  is normally fed back. 

i n t  the 5 s ta tes  that  are skipped and the singular s t a t e  0000 as don't 

By t r ea t -  

cares, the feedback function reduces t o  
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The s t a t e  diagram appears i n  Fig. 5-4. 

Fig. 5-4. FSR State Diagraq f o r  

Though bk) has the required ,cycle length* when properly ini t ia l ized,  

none of the 10 possible i n i t i a l  s t a t e s  yields the desired. sequence {ak) . 
The d is t inc t  successive s ta tes  bk bk bk bk-4 can be transforzed 

t o  b i t s  corresponding t o  {ak) . Each of the 10 cyclic permutations of 

the 10 s ta tes  can be used in  the s t a t e  zssignment f o r  realizing { zk) . 
Two of the 10 require copbinational logic of minimum cost. 

cost assignment appears i n  Table 5-3  where b-l b 

corresponds t o  ao. 

- 

A minhm 

b_g b-4 of 1110 
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k bk-l bk-2 'k-3 bk-4 bk ak 

0 
1 
2 

3 
4 
5 

6 
7 

8 

9 

1 
1 
0 
0 
1 
0 
0 
0 
1 
1 

1 
1 
1 
0 
0 
1 
0 
0 
0 
1 

1 
1 
1 
1 
0 

0 
1 
0 
0 
0 

0 
1 
1 
1 
1 
0 
0 
1 
0 
0 

1 1 
0 1 
0 1 
1 0 
0 1 
0 0 
0 -  0 
1 0 
1 1 
1 0 

Table 5-3  State  Table f o r  Transforming 

Successive States of an FSR t o  0100010111 

From Table 5-3 

The overal l  cost of an FSR transformation for  generating {ak] 

is 

46 + 7y (feedback) + 6y (transformation) 

This cost is lower than that of the (10, 4) BRS generator and equal 

to that  of the (10, 5 )  BARS when 6/y = 13. 

The MIN-6 program is organized t o  accept a sequence of problems 

t o  be solved independently. 

investigate various approaches and assignments i n  the synthesis of sequential 

?Iris f l e x i b i l i t y  makes it possible t o  

networks. 



. .  . 
5.3 Binary Sequence Detector 

Binary sequence detectors may be used i n  ground decoding 

equipment for  locating each successive data frame. An ident i f ie r  

(prescribed sequence) appears a t  the beginning of each ser ia l ized 

data frame. See subsection 5.2. The sequence detector is analogous 

t o  an electronic combination lock which remains closed u n t i l  a pre- 

scribed sequence is entered. 

the last b i t  i n  the sequence. 

I 

I t  is opened only for  the CPI following. 

The detector of any given n-b i t  sequence may be viewed as 

a sequential network having one input and one output. 

network m u s t  be capable of assuming a t  l ea s t  n-distinct internal s ta tes .  

The sequential 

The minimum nmber of memory elements required is 1 + [ log2 n] as pre- 

viously defined. 
1 there is no known algorithm for  assigning state-values .to 1 + !log2 n, 

or more memory elements such.that the overall cost of the sequential 

Given the cost of the menory and decision elements, 

network is minimized. Exhaustive comparisons of s t a t e  assi,meents are 

beyond the reach of present-day general-purpose computers except fa r  

m i n k  state networks where n is less than 9. The binary sequence 

detector represents a very special  c lass  of sequential networks and 

may therefore be t reated accordingly. 

The familiar s h i f t  reg is te r  together with an n - i n p t  decision 

element can serve t o  detect any given n-bi t  sequence. 

s e r i a l ly  s tores  n-1 b i t s .  

The regis ter  
t h  These and the r?-bit ( just  p r ior  tn  entering 

the regis ter)  are sensed by an n-input decision element. Thus the given 

n-b i t  sequence can be located wherever it cccurs. Thouzh s t ra ight-  

fonlrard, t h i s  method is uneconmicai i n  terms of the number of memory 

elements required. For large n, the number of decision elerncnts t o  
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practically r e a l i k  an effective n-input decision elerncrit is also 

signi f icant . 
When the given sequence is subperiod free, an alternate 

approach can be used. The steps i n  the synthesis procedure [P68-1] 

are i l lus t ra ted  i n  Example 5.4. 

EXAMPLE 5.4 

Given the following sequence 

1 1 0 1 1 1 0 0 0 0  {ak} 

9 8 7 6 5 4 3 2 1 0  k 

The sequence {zk) has an (n, rmin ) BRS representation of (10, 4). 

This is a minimum r The ten 4-bit  subsequences are tabulated 

i n  Table 5.4. 
min' 

ak- 1 ak- 2 ak- 3 ak- 4 ak k 

0 
1 
2 
3 

4 
5 
6 
7 
8 

9 

1 
0 
0 
0 
0 

1 
1 
1 
0 
I 

1 
1 
0 
0 
0 
0 
1 
1 
1 
0 

0 
1 
1 
0 

0 
0 
0 
1 
1 
1 

1 
0 
1 
1 
0 
0 
0 
0 
1 
1 

. o  
0 
0 
0 
1 
1 
1 
0 
1 
1 

TABLE 5.4 (10, 4) BRS GEXERATOR OF 1 1  0 1 1  1 0 0 0 0 

An FSR can be used t o  realize the (10, 4) BRS generator 

with the following feedback function 

- ak - ak-l ai-2 + a i - 3  a i - 4  + ak-2 ak-3 ak-4 

The s i x  unspecified states are treated as den' t cares. Thus 
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ai-l 'k12 ai-3 ' 'i-2 ak-3 ai-4 + ak-l "k-2 ak-3 ak-d 

-t ak-l  ai-2 ai-3 ak-4 = o  - 

The (10, 4) BRS characterization of Cak3 and the associated 

FSR implementation suggest an orgakization of a sequential network for  

detecting {ak} within serialized binary data. 

s t a t e s  of the proposed sequential network are labeled numerically with 

In Table 5-5 the internal - 

an i n i t i a l  s t a t e  designation of 1. 

is the number of b i t s  i n  the sequence. 

The number of internal s ta tes ,  l o 5  
The input t o  the detector is 

represented by the Boolean variable x. 

?resent 
State 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Next State 

x = o  

0 
0 
@ 
0 
5 

2 

2 

@ 
- 3  

2 

x =  1 

1 

1 

1 

1 

0 
0 
@ 

@ 
1 

0' 

Present Output 

x = o  

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

x = l  

0 

0 

0 

0 

0 

0' 

0 

0 

0 

1 

STATE TAELE FOR A BINARY SEQUENCE DETECTOR TABLE 5-5 

The arr ival  of the first 0 on the x input l ine ( i . e . ,  possible 

start of the sequence, ao) cacses the s t a t e  transit ion from 1 ( i n i t i a l  

present s ta te )  to  2 ( n a t  s t a t e ) .  Should each succeeding b i t  lie p a r t  
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of the' sequence ti be detected, the sequential network progresses 

through each s t a t e  i n  numerical order. This is indicated i n  the 

encircled next s t a t e s  i n  the s t a t e  table. During the time the net- 

work is i n  the present state 10 and 1 is on the line,  the detector's 

(present) output is 1. 

input s t a t e  and internal s t a t e ,  of the network. 

model of the sequential network. 

The output is a function of the t o t a l  s t a t e ,  

This is a Mealy 

c 

If a t  any time a b i t  is received which is not in  the sequence, 

though previous b i t s  were identical  t o  the s t a r t  of the sequence, the 

network must return t o  the i n i t i a l  s t a t e  1, s ta te .2  o r  3, o r  remain in  

state 5. Since the sequence begins with a 0, whenever a 1 arrives 

improperly located i n  the sequence, the network must return to  s t a t e  2 

o r  3 or remain i n  s t a t e  5 i f  preceded by a run of four 0's. For 

example, assume the network is in  present state 9 (meaning the 8 pre- 
th  vious b i t s  correspond t o  the first 8 b i t s  i n  the sequence) and the 9- 

b i t  is a 0 instead of  a 1. 

the s t a t e  10. 

Clearly the network should not progress t o  

I t  should instead return to  s t a t e  3 since b i t  8 and 

b i t  9 (now entering) correspond to  the first two b i t s  in the sequence. 

Thus the 8- b i t  of the 9-bit block could possibly be the s t a r t  of the th 

sequence. 

I t  is proposed that  the s t a t e  assignment be taken from the 

ordered subsequence i n  the (n, r;nin) B E  such that: 

1) Successive s ta tes  through which the detector progresses 

when the sequence is entered are  made to  corrsspond to  

successive subsequences, and 

An i n i t i a l  s t a t e  is  chosen whereby one of a t o t a l  of rmin 

delay units in  the detector w i l l  track the input :c a t  

2) 

a l l  times. 
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A 

Table 5-6.  

s t a t e  assi,ment 

Four delay units 

satisfying steps 1 arid 2 appears in  

are required fo r  the detector i n  , 

- 

Example 5.4. 

and next internal s ta te ,  respectively. 

Let dl d2 dg d4 and D1 D2 D3 D4 represent the present 

Table 5-6 is divided into three par ts  fo r  explanatory pur- 

The top 10  entries describe the detector's behavior when {a,} poses. 

is  entered. The next 10 entries correspond to  a present t o  next s t a t e  

transit ion when the input x is not properly in {%I. 

x dl d2 d3 d4 of 0 1 1 0  1 indicates tha t  the 8 b i t s  previously entered 

correspond t o  the first 8 b i t s  i n  

whereas the 9- b i t  of' {ak) is 1. 

o r  s t a t e  3 since the previous and present input could be the s t a r t  of 

{ak). 

usused) t o t a l  s ta tes .  

k t o t a l  s t a t e  

The present input x is 0 

The next s t a t e  D1 D, D3 D4 is 0 0 0 0 th  
L, 

The lower portioa of Table 5-6 contains unspecified ( i .e . ,  

The next internal s t a t e s  are therefore treated 

as  don't cares, 

The next s t a t e  of each delay uni t  and the present output of 

the detector, denoted as Z,  are Boolean functions of x, dl, dZ, d3, and 

d4. 
canonical form direct ly  from Table 5-6. 

D , D , D , D 1 2 3 4  and Z may be expressed i n  (disjunctive or  conjunctive) 

These functions represent a 

multioutput combinational logic network. 

Four of the outputs serve as inputs t o  the delay units. XIIN-6 

was used i n  the simultaneous minimization of the next-state functions. 

Only one specified canonical input (i.e., t o t a l  s ta te)  is associated 

with Z. In  an ef for t  t o  reduce the number of simltaneous functions 

i n  the computer minimization, Z is treated as a single outp"t f h c t i o n .  



Present (internal ) 
d l  d2 d3 d4 state 

0 0 1 1  
0 0 0 1  
0 0 0 0  
1 0 0 0  
1 1 0 0  
1 1 1 0  
0 1 1 1  
1 0 1 1  
1 1 0 1  
0 1 1 0  

1 
2 
3 

, 4  
5 
6 
7 
8 
9 
10 

0 0 1 1  
0 0 0 1  
0 0 0 0  
1 0 0 0  
1 1 0 0  
1 1 1 0  
0 1 1 1  
1 0 1 1  
1 1 0 1  
0 1 1 0  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0 0 1 0  
0 1 0 0  
0 1 0 1  
1 0 0 1  
1 0 1 0  
1 1 1 1  

0 1 0 0  
' 0  0 1 0  pi 

1 1 1 1  

Next (interna!) 
Dl D2 D3 D4 state 

0 0 0 1  
0 0 0 0  
1 0 0 0  
1 1 0 0  
1 1 1 0  
0 1 1 1  
1 0 1 1  
1 1 0 1  
0 1 ' 1  0 
0 0 1 1  

2 
3 
4 
5 
6 
7 -  
8 
9 
10 
1 

0 0 1 1  
0 0 1 1  
0 0 1 1  
0 0 1 1  
1 1 0 0  
0 0 0 1  
0 0 0 1  
0 0 1 1  
0 0 0 ' 0  
0 0 0 1  

1 
1 
1 
1 
5 
2 
2 
1 
3 
2 

0 0 1 6  
0 0 8 0  
0 0 8 0  
0 6 8 G 3  
0 0 0 0  
0 0 @ 0  
6 0 8 6  
6 0 6 0  
6 0 1 6  
0 0 @ 0  
0 6 0 0  

4 0 b 0  

TABLE 5-6 STATE TABLE FOR A BINARY SEQUE3CE DETECTOR 

The simultaneous minimized solutions of D1, D2, D3, and D4 together 

with a 'minimized Z represent a two-level A!-OR diode matrix implmenta- 

t i o n  of the detector's combinational logic .  
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For Example 5.4 

D1 = x $ d3 d4 + d2 d i  d i  + x' dl d i  + x' d j  d i  

D2 = d2 d i  d i  + x' dl d i  + x dl d2 

D3 = x 

D4 = x d i  + d3 

and Z = x di d3 d i  

The cost of the detector is 4 memory elements and 31 diodes. 

The number of diodes required without minimization is  140! (See Table 

5-6). In practice an inverter is required to  generate x'. 

signal conditioning of x would be needed fo r  any detection method. 

However, 

It 

w i l l  be assumed tha t  the signal conditioner w i l l  provide the assertion 

and negation of x. 

The cost of the multioutput combinational logic for  the 

implementation of D1, D2, D3, and D4 i n  Example 5-4 was determined fo r  

each possible i n i t i a l  s ta te .  These costs appear i n  Table 5-7. In i t i a l  

s t a t e  assignments f o r  which one of the delay units tracks the input, x, 

resul ts  i n  a lower diode cost thm. the remaining choices. In particular,  

the i n i t i a l  s t a t e  0 0 11 for which D3 = x yields aminimm cost. 
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Initial State 

1 1 0 1  

0 1 1 0  

0 0 1 1  

0 0 0 1  

0 0 0 0  

1 0 0 0  

1 1 0 0  

. l l l O  

0 1 1 1  

Diode Cost 

32 

31 

35 

.' 45 

6 6  

67 

64 

56 

1 0 1 1  54 

D1 = x  

DZ = x 

D3 = x 

D4 = x 

TABLE 5-7 DIODE CDST VERSUS INITIAL STATE 
FOR DEI'ECI'OR I N  EXAMPLE 5-4. 



5.4 Digital Techniques For Generating a Time Dependent Acceleration 
Voltage For a Mass Spectroineter 

5.4.1 Introduction 

An unmanned interplanetary f l i gh t  t o  Mars has been proposed 

f o r  1971. A n  entry probe is  t o  be released from the spacecraft fo r  

a descent in to  the Martian atmosphere. The determination of the con- 

s t i tuents  of the Martian atmosphere and the i r  relative abundance is 

one of the sc i en t i f i c  goals. 

c 

A single focusing mass spectrometer D58 was f i r s t  con- 

The essent ia l  components of ttle instrument appear i n  Fig .  
[ I  

sidered. 

5 - 6 .  

whereas the support electronics is  represented i n  functional blocks. 

5.4.2 Instrument Operation 

Tne instrument portion is shown i n  i t s  mechanical configuration 

The gas t o  be analyzed is  introduced into the.ionization 

A portion of the sample gas is ionized when bmbarded by chamber. 

an electron beam which is para l le l  t o  the source exi t  s l i t .  

high voltage sweep produces an electrostat ic  f i e l d  which accelerates 

the ions through the source ex i t  s l i t  with approximately hcnogeneous 

energy. The result ing ion beam is deflected by the electromagnetic 

f i e l d  of the analyzer (permanent) magnet-such that a t  a given value 

of v (high voltage sweep) a l l  ions with a particular m a s s  per unit  

charge are  focused on the collector defining slit.  

is collected and fed in to  a very sensit ive operational q l i f i e r  

The 

The ion current 

called an e lec t rmeter .  

increase in  dyna-niz range. 

Automatic scale switching provides an 
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A monotonically varying v is  used to  'separate ions - 1~7ith 

The location of a peak in  time ident i f ies  the associated mass per 

unit charge and the amplitude of the peak is a function of i t s  rela- 

t ive  abundance. 

~n importa-it parameter is the instrument's resolution. TIG 
' M  

I t  d i f fe rs  s l igh t ly  frcm the chemical scale of 

mass per un i t  charge, - is  i n  atomic m a s s  units where the isotope '68 0 

is taken t o  be 16. 
9' 

1 atomic weights b53 . Hereafter, the atomic m a s s  units (a m u) w i l l  

be referred t o  2s nass (m). 

a t  a p a r t i c d z r  m as follows: 

The resolution of the instrument is  defined 

m 
Am 
- ) r l %  

X 

- - ' r n  - 
(m + 1) - m - x 1OG% - 

X 

m + (m + i) z where m = 

and x and y are  t ine mzasurenents. 

described i n  t h i s  report is: 

The resolution of the instzwipzilt 

q = 25 
1% 
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That is ,  a t  mass 25, the instnnnent 'has unit resoIution. 

5.4.3 Parmctcrs For Determining the Acceleration Voltage Curve 

A. Ion 3al.listics 

The ion ball . ist ics of the instrument i n  Fig. 1 is expressed 

as fo l lo~f s :  

where R = 3.81 an. 

B = 3,780 Gauss 

g=m is i n  a m u .  
9 

and v is  i n  volts.  

Thus 9 

A t  t h e  t the 

m(t) v ( t )  = 10,000 

relocity (which is  proportional t o  r] and the mass m 

of the ions determine i ts  radius of deflection which mst be 3.81 an. 

t o  be focused on the collector defining st i t .  .b accelerating voltage 

which decays exponentially can be approxinaterl by an RC discharge. 

The base width of the ion peaks over the ent i re  pass range are nearly 

the same fo r  the exponential accelerating voltage where 

-t 
v( t )  = v(0)e 7 

Unfortunately, ion peaks will not appear linearly separated i n  t h e .  

A l inear separation of ion peaks with respect t o  time is  

desirab'le when iriterpreting a spectogram. The f o m  required for  m C t )  i s  

m(t) = a t  + m ( 0 ) .  



- 4- 

Thus 

10,000 
v(t) = 

A hyperbolic (i.e., inverse) acceleration voltage cannot be generated 

by analog methods as readily as the exponential. 

Unlike the exponential case, the base width of the ion peaks 

varies direct ly  with atomic mass uni t  interval. 

B, Mass Range 

The mass range f o r  the instrument i n  question is 10 t o  45. 

A lower limit of 220 Thus v ( t )  must vary from 1000 t o  222.22 volts .  

vo l t s  is actually used. 

mass 45 within the s p e c t m .  

This places the ion peak associated with 

5.4.4 Hyperbolic Curve Generation Using Digital  Techniques 

A. The Derivation of Successive Decrenented Ix: Voltage Levels of 

Fixed Duration. 

The calculus of f i n i t e  differences LH32 yields the follow- 

ing discrete relationships: 

m[t(k)] = at(k) + m(0) = at(k) + 10 = m(k) 

t (k)  = k f o r  k = 0,1, ..., 2*-l 
and r is an integer. . 

From (5.5) where v(zr-l) = 220 vol t s ,  
A 

a ;  = 39 = a 
-e 

11(2r-1) zr- l  
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The quantization required f o r  v i n  quanta is: 

I AV (2.' - 2) a 

Av(k) is the forward difference and Av(2'-2) = v(zr-l) - v(zr-2). 

Note tha t  Av(zr- 2) is smallest change v undergoes. 

a 

Thw if time is quantized with r b i t s  ( r  - > 5), voltage must be 

quantized t o  r + 3 b i t s  t o  recognize Av(zr-2). 

Fig. 5-7 i l l u s t r a t e s  t h i s  method. Time is quantized by xiieans 

of feedback s h i f t  regis ter  (FSR) operating synchronously with a con- 

stant clock frequency. 

internal s ta tes .  

a 9-bit  non-weighted code. 

The nine stage FSR is  cycled through 512 

The assertion outputs of the pine stagzs represent 

A two-level diode AhD-OR matrix with 

twelve outputs translates the 9-bi t  non-weighted t o  a 12-bit weighted 

(positional) code. The -12-bit representation is converted t o  a DC 

voltage level which is proportional t o  the magnitude of 12-bit binary 

number. 

1000 t o  220 vol t  hyperbolic sweep. appears a t  the output of the high 

voltage operational amplifier. 

fixed duration appear at  the output of the D/A ccnverter. 

This is the function of the d ig i ta i  t o  analcg converter. The 

Successive decremented levels of a 
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The number of diodes i n  the AND-OR matrix which represent thc 

9 input twelve output t ruth table i n  disjunctive canonical form is  4608 

f o r  ANDing and 3054 f o r  ORing or a t o t a l  of 7662 diodes. A si l icon on 

sapphire microelectronic implementation of the diode AND-OR matrix is 

currently under test. 

MIN-6 was used t o  f ind a cover of approximate minimum cost. 

A reduction of 738 diodes or 9.6% was realized i n  4 hours and 1 2  mirutes 

of computer runlling time. 

could handle the 1 2  Boolean functions of 9 variables. I t  hzs since been 

This program has the only me found which 

, improved particularly for  the cover options of approximately minimm cost. 

Further ruris w i l l  be made with the improved program. 
5 EXAMPLE 5-5 Hyperbolic Curve Generation with 2 quanta 

Since time is quantized with r = 5 b i t s ,  8 b i t s  are required 

t o  recognize rv(30). 

fo r  k = 0,1, ..., 31 255 . v(k) = -n,l - .- 
11 31 

The largest  8 b i t  binary nunber, 255, is  used t o  represeiit 1000 volts.  

The feedback function f o r  the 5-stage FSR is 

% = ak-3 * ak-5 'i-1 " i - 2  ai-3 a i -4  ak-5 

Successive inputs and outputs o'f a 5 x 8 rriatrix appears i n  TABLE 5,-8. 

Note tha t  ak - has been replaced by xi,  A plot  of Z = Z1 Z2 ... z8 in  

decimal versilS k appears i n  Fig. 3-8. 

The 8 Boolezn functions of 5 variables were minhized 

simultaneously under a cover option of approximate minimum cost. In 

T.ULE 5-S 10000 is the i n i t i a l  s t a t e  aid the sifigulsr s t a t e  00000 i s  

1 the terminal s t a t e  which rcnains un t i l  the f i rs t  stage i s  set  (i.e., x 



is  made a 1). This init ial  state yielded the best minimum co 
- 

the possible 32 i n i t i a l  s ta tes .  The effect of using 

s t a t e  is t o  cyclically permute the input s t a t e s  

output states. A t o t a l  of 293 diodes is  associated with 

canonical t ru th  tables. A reduction of 119 diodes or 40.6% was realized * 

with 1000 as an i n i t i a l  state. 

smallest reduction of 67 diodes cr 22.8%- Each of the minimization 

runs required less than 2 minutes of IBM 7094 computing t i m e .  This 

The i n i t i a l  state of 10101 yielded the 

included pre-processing, extraction, and post-processing time. 

An alternate approach is discussed i n  [P68-21 whereby the 

duration of successive DC voltage levels is varied such that  a hyper- 

bol ic  curve resul ts  with equal changes i n  voltage levels. 
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ABSTRACT: In this paper, we present a general axiomatic 
treatment of J. Paul Roth's "extraction algorithm" for the 
minimization of logical circuits.' This treatment brings 
together the seemingly different versions of the algorithm 
presented in Roth's different papers. It provides a general 
proof of the algorithm over a wide range of cost functions. 
The minimization problem and the algorithm are  presented 
in a n  abstract context ( I .  e. ,  without direct reference to any 
particular application, such a s  switching circuits) and i s  
thus applicable to any "covering problem'' i n  which the 
axioms a r e  satisfied. 
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I NT R ODU CTI ON 

In this paper we present a general axiomatic 

treatment of J. P. Roth's "extraction algorithm. '' This 

treatment brings together the seemingly different versions 

of the algorithm presented in  Roth's different papers, i t  

provides a general proof of the algorithm, and i t  facili- 

tates the application of the algorithm to new situations, 

The extraction algorithm was originally developed 

by Roth [ R-21 a s  a means (algorithm) for finding minimal 

two-level AND-OR circuits. 

[ E-R-WI and special extraction algorithms were 

developed for other classes of logical circuits [ R-W] 

(and various unpublished results). 

In later papers i t  was refined 

The type of problem to which the extraction algor- 

items a r e  directed may be roughly described a s  follows: 

We a r e  given a finite set K of objects which (in some 

sense) cover another set of objects L and, indeed, cover 

i t  more than once. Each object i n  K has a non-negative 

- cost associated with it. The extraction problem i s  to find 

a subset M of K which covers L and is of minimal cost 

in that there i s  no other subset of K which both covers 
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L and i s  of lower cost than M . In the simpler cases 

the cost of a subset of K is  just the s u m  of the cost of 

i ts  ele.ments; however, in the general case, more  com- 

plex cost functions a r e  employed. 

From a pure mathematics point of view, the 

extraction problem is trivial since, because K i s  finite, 

the problem may always be solved by an  exhaustive ex- 

amination and comparison of all  subsets of K . Clearly 

though, if K i s  large, the number of subsets i s  astro- 

nomical (e. g . ,  i f  K contains 20  elements, then there 

a r e  approximately 1,000, 000 subsets), and such an ex- 

haustive examination i s  impractical using even the fastest 

computers. Thus, the real  problem i s  to develop algor- 

ithms which a r e  efficient enough to deal with problems of 

reasonable size. 

algorithm is, a s  will be seen, dependent on the nature of 

the problem. In the worst case it approaches exhaustion, 

but in the best cases it provides an answer directly without 

any exhaustive examination of cases. 

programs employing the extraction algorithm have proven 

The efficacy of the general extraction 

Design automation 

their usefulness in the field in application to a variety of 
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real  design problems. 

In this paper our treatment of the extraction prob- 

lem and the extraction algorithm i s  quite abstract (and 

thus quite general). We start ,  in Section 1, by stating 

the extraction problem in te rms  of abstractly defined 

notions of cover and cost. (The notion of a cover i s  de- 

fined in terms of a "difference" operation. ) In Section 2 

we present a f i rs t  set of axioms for the extraction a lgo r -  

ithm. 

inelegance), but they lead to a very general presentation 

and proof of the extraction algorithm. 

present an alternative set of axioms and show that they 

imply the f i l s  t set. These simpler axioms a r e  designed 

to facilitate the proof (or disproof) of the applicability of 

the extraction algorithm in real  situations. In Section 4 

we sketch two examples of applications of the algorithm. 

These axioms a r e  quite complex (to the point of 

In Section 3 we 



Notational Conventions 

Rt non-negative real numbers; 

K - k for K - {k) ; 

K u k for K u {k}; 

P(S) power s.et of S (set of all subsets of S ) ; 

TI a partition of K k c K  lT(k) class in 

TI containing k (partitions do not 

include 8 ). 
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1. THE EXTRACTION PROBLEM 

In this section we present the basic definitions 

We will  give interpretations of used in our approach. 

the s e definitions, 

the axioms in the 

but their "real meaning" is given by 

remaining sections. We star t  from: 

T , a set (from which we draw subsets to be 

cover ed) ; 

S , a set (from which we draw the subsets which 

cover) ; 

d : P(T) X P ( T  u S )  -P(T) , the difference 

function; 

t c : P(S) X P(S) -R , the relative-cost function. 

Informally speaking, what we a r e  interested in  

is ''covering" subsets of S with subsets of T of minimal 

"cost. 'I  The notion of "covering" is defined in terms of 

the function d ; the notion of Ikost" i s  defined in terms 

of the function c . Given L C T  and K C S  , we can 

interpret d(L, K) a s  being "the part  of L not covered 

by K . Correspondingly, we can interpret d(L, d(L, K)) 



a s  being "the part  of L covered by K .'I Given K , 

K'  C S we can interpret c(K, K')  as being "the cost of 

K' given that one already has K .'' Of course, these 

interpretations will  not "make sense" for arbitrary 

choices of d and c . However, with the axioms given 

in the following sections, these interpretations become 

"natural. These interpretations though lead to the 

following definitions : 

Let c* : P(S)-Rt such that, fo r  every K C S , 

c*(K) = c(q,K) . 

Given K C S , L C T  , and I C S , we define a 

cover of L to be any subset C C S such that 

d(L, C) = Cp ; 

(K/I)-cover of L to be any cover C of L such 

that I C C  c K  u I ; 

K-cover of L to be any (K/q)-cover of L ; 

minimal (K/I)-cover of L to be a (K/I)-cover 

M of L such that, for every (K/I)-cover 
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c of L 

c*(C) 2 c*(M) ; 

. minimal K-cover of L to be any minimal (K/$)- 

cover of L. 

Using the above definitions, we define: 

The Extraction Problem: Given T, S ,  d, and c , and 

given L C T  and K C T  , K finite, and such that 

d(L, K) = $ (i. e.,  K i s  a cover of L ) , find a minimal 

K-cover of L .  
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2. THE BASIC EXTRACTION ALGORITHM--FIRST 
AXIOMS AND PROOF 

Thie section begins with four rather complex 

axioms which we may impoee on T , S ,  d and c e 

W e  then present an algorithm, the extraction algorithm, 

and show that, when the axioms hold, this algorithm 

always leads to a solution of the extraction problem. 

The complexity of the axioms facilitates the statement 

and proof of the extraction algorithm; in the next section 

we will  present a variety of simpler axioms which imply 

these initial axioms. 

The Initial Axioms 

While the extraction problem was stated purely 

in terms of T , S , d , and c , the axioms and algorithm 

employ one additional object, namely, a partition TI of 

S . Given any KC S , let % denote the restriction of 

TI to K , 

element of 5 which contains k. 

and, given keK C S , let %(k) denote the 

The axioms on T , 

S, d, c, and TI a r e  then a s  follows: 

For a l l  L C T and I, K C S  such that d(L,I u K) = 9 : 
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Axiom 1: If krK and d(L,Iu (K-k))# 9 , then k i t 3  in  

every minimal (K/I)-cover of L . 

Axiom 2: If M i s  a minimal (K/I)-cover of L and 

k c M  - I , and Q is a minimal ((K-k)/(I u k))-cover of 

d(L, k) , then Q is a minimal (K/I)-cover of L . 

Axiom 3: If k , 

if d(d(L, d(L, I u 5 ( k ) )  , 

c(1, lIJ(k')) 4 c(1, TIJ(k)) , 

((K-lIJ(k))/I)-cover of L is also a minimal (K/I)-cover 

k' EJ = K - I , with nJ(k) # TIJ(k') and 

I u I$(k')) = #J and i f  

then every minimal 

of L , and there exists a t  least one minimal 

( (K-TIJ(k)) /I) -cover of L . 

Axiom 4: For a l l  L C T , d(L, Ip) = Ip . 

The Extraction Algorithm 

Given I , K C S and L C T , the following 

algorithm defines an  object M(L, K/I) ; the theorems 

following the algorithm show that this is the desired 

minimum cover under appropriate conditions. We assume, 
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for expositional convenience, that a linear ordering i s  

given on K . 

START: go to 1 .  

1. Let J = K - I , does there exist a pair 

(k, k')  E J X J with TIJ(k) # TIJ(k') , but with 

d(d(L, d(L, I u %(k))), I u flJ(k')) = 9 

and with c(1, IT (k')) 4 c(1, IT (k)) ? If yes, go to 

2 ; i f  no, go to 3 . 
J J 

2. Let (k, k') be the least such pair (under the 

lexicographical ordering of K X K induced by 

the linear ordering on K ), then take 

M(L, K/I)  = M(L, (K-nJ(k))/I) 0 

3. Does there exist any element k c K  - I such that 

d (L, I  u (K-k)) # $ ? 

If yes, go to 4 ; i f  no, go to 5 .  

4. Let k be the f i rs t  such element (under the linear 

ordering on K ). If d(L,I  u k) = 9 , then take 

M(L, K/I )  = I u k 
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and stop; otherwise, take 

M(L, K/I) = M(d(L, k), (K-k)/(I u k)) . 

5. * Pick k E K (say the f i rs t  element) and compute 

A = M(dZ(L, k), (K-k)/(I u k)) 

and B = M(L, (K-k)/I) . If c*(A) > c*(B) , then 

take M(L, K/I) = B ; if c*(B) 3 c*(A) , then take 

M(L, K/I) = A . 

Theorem 2.1: If I, K C S and L C T  such that 

d(L,I u K) = $ , but d(L,I) f $ , K i s  finite, and 

Axioms A. 1, A. 2, A.3, and A. 4 hold, then the result 

M(L, K/I) of the extraction algorithm is a minimal 

(K/I)-cover of L . 

Proof: 

elements in) K . 
We proceed by induction on the size (number of 

Say that K contains n = 1 elements so K = (k} . 
Since, by assumption d(L, I) # $ , 

is the minimal (K/I)-cover of L . Now consider the 

application of the algorithm. Since K = {k) , it is clear 

it is clear that I u (k) 
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that IT= ((k}} and that step 1 carries us to step 3. But 

since K - k = I$ , we then have 

d(d(L, d(L,I u k), I u (K-k)) = d(d(L,(P), I u +) = 

d(L, I) by A. 4 

# 9 by theorem statement. 

Thus we go to step 4 where, since d(L,I u kf = + , we 

stop with M(L, K/ I )  = I u (k) , which i s  just what we 

desired. 

Assume now that the result has been proved for  

all I ,  K , and L where K has n (n 3 1) or fewer 

elements. Consider I, E;, and L where K has n + 1 

elements. We consider three cases: 

Case 1: There exist k, k'c J = K - I satisfying A. 3.  

That i s ,  IJJ(k) # IIJ(k') , but 

-- 

and c(1, TT (k')) 4 c(I, IIJ(k)) . 
a minimal ((K-TI (k))/I)-cover M of L which i s  a mini- 

Then, by A. 3 ,  there exists J 

J 
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mal (K/I)-cover of L . But, turning to the algorithm 

w e  see then that step 1 wil l  ca r ry  u s  to step 2 (since the 

desired k, k' c J exist). Now step 2 makes 

M(L, K/I) = M(L, (K-nJ(k))/I) 0 

But, since K - II (k) i s  smaller than K , i t  follows J 

from the induction hypothesis, 

a minimal ( ( K -5 (k) ) /I) - c over 

above M(L, K/I)  i s  a minimal 

that M(L, (K-IIJ(k))/I) i s  

of L ,  and thus, by the 

(K/I)-cover of L . 

Case 2: There do not exist k , k' E K  - I satisfying A. 3 

but there exists k r K  satisfying A. 1; that is ,  

Then in this case we know, by A. 1, that k i s  in every 

minimal (K/I)-cover M of L . But then Axiom A. 2 

appli e s , that is, i f  Q i s  any minimal 

((K-k)/I u k)-cover of d(L) , then Q is a minimal 

(K/I)-cover of L . But, turning to the algorithm, we see 
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that step 1 car r ies  us to step 3 which will  ca r ry  us to 

step 4 (since k c K  exists satisfying A. 2). Now step 

4 makes 

M(L, K/I) = M(d(L, k), (K-k)/(I u k)) . 

But since K - k i s  smaller than K , i t  follows from 

the induction hypothesis that X(d(L, k), (K-k)/(I u k)) i s  

a minimal ((K-k)/(I u k))-cover of d(L, k) , and thus, 

by the above, M(L, K/I) i s  a minimal (K/I)-cover of 

L .  

Case 3: There do not exist k , k' E K  - I satisfying 

A. 3 or A. 1. Then clearly, i f  we pick kc K , then 

either there exists a minimal (K/I)-cover M of L 

including k or there does not. If a minimal (K/I)-cover 

M exists with k e M ,  then, by A. 2, every ( (K-k) /I  u k)- 

cover of d(L, k) is  a minimal (K/I)-cover of L . On 

the other hand, if  no such minimal (K/I)-cover exists, 

then there must exist a minimal (K/I)-cover M with 

k / M  . (Note that since A. 1 does not hold, there exist 
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(K-k/I)=cover~ of L .) But then this cover M i s  clearly 

a ((K-k)/I)-cover of L . Now, turning to the algorithm, 

we see that step 1 carr ies  us to step 3 which carr ies  us  to 

step 5. But then we take M(L, K) to be the cheaper of 

But since K - k i s  smaller than K , i t  follows from the 

induction hypothesis that these are the desired minimal 

covers. 

Since Case 3 is essentially an exhaustive algorithm, 

it i s  clear that these three cases cover all possibilities 

and thus i t  follows, by induction, that the algorithm 

always produces a minimal cover. Q. E. D. 

Corollary 2. 2: If K C S and L C T such that d(L, K) = $ , 

L # $ , K is finite, and Axioms A. 1, A. 2, A. 3 and A. 4 hold, 

then the result M(L, K/$) of the extraction algorithm i s  a 

minimal K-cover of L . 
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Proof: Follows immediately from the preceding theorem 

by taking I = $I . Q. E. D. 



3 .  ALTERNATIVE AXIOMS 

In this section we will present some alternative ' 

axioms for the extraction algorithm. 

imply the axioms given in the preceding section, but they 

a r e  not strictly equivalent to them (i. e . ,  they a r e  not 

implied by the earlier axioms). 

section, we present axioms fo r  the "difference function" 

d . These axioms a r e  sufficient to prove Axioms A. 1, 

A. 2, and A. 4 of the preceding section (indeed, they 

include Axiom A. 4). 

we present axioms on the cost function and employ them 

to prove Axiom A. 3. 

These axioms will 

- 

In the f i rs t  part of the 

In the second part of the section, 

Axioms for  the Difference Function 

We start  by defining a relation = on P(T) . 
Given L , L' C T we write L =L1  i f  and only i f  

d(L, L') = d(L', L) = $J . 

Intuitively, L EL' means a r e  two representations of 

the same thing-4. e . ,  it  will  be the case that anything 
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which covers L also covers L' and vice versa. Note 

that h: is, by definition, a symmetric relation, but 

until we impose further properties on d , it  i s  not 

necessarily either reflexive o r  transitive and thus the 

above intuitive interpret ation i s  dependent on the axioms 
- 

given for d . 
The Difference Axioms (or D-axioms) a r e  as  

follows: 

Axiom D. 1: For  a l l  L CT,  d(L,q) = L . (note, this is 

the same as Axiom A. 4.) 

Axiom D. 2: For  a l l  K C T u S d($, K) = $I . 

Axiom D. 3: For  all L C T  and K, K' C S u T , 

d(L, K u K') s d(d( L, K), K') . 

Axiom D. 4: For all L, K C S , and J C T u S , 

d(L, K) = d(K, J) = 9 

implies d(L, J) = 9 . 
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These axioms can be intuitively interpreted a s  

follows: Axiom D. 1 says that "subtracting" nothing 

(i. e . ,  Ip ) from a subset L C T  givea us L (so $ 

ierves  aa a zero). Axiom 'D. 2 says that subtracting 

something from nothing still results in nothing. 

D. 3 says (subject to our earlier interpretation of =) 

Axiom 

that we can break up the taking of the difference into a 

series of differences. Axiom D. 4 says that the covering 

relation i s  transitive; i. e . ,  it  says that if K covers L 

and' J covers K , then J covers L .  

Given these axioms, we can now prove that the 

relation E has the desired properties. 

Proposition 3.1: If Axiom D. 4 holds and for  every 

L C T  there exists L1 such that L E L' , then the 

relation = is an equivalence relation. 

Proof: We already know that i s  symmetric from its 

definition. That i t  i s  transitive follows easily from D. 4 

for i f  L1, L2, L C T  and L1 s L2, L2 E L3 , then we 
3 

have 
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d(L , L ) = d(L , L ) = d(L , L ) = d(L3, L2) = + 1 2  2 1  2 3  

BO, by. D. 4, d(L , L  1 = d(L , L )  = 9 , i. e. L1 L3 
1 3  3 1  , 

Finally, from the assumption that for each L C T  there 

exists L' C S such that L' E L , w e  have 

d(L,L')  = d(Lt ,L)  = 9 ,  so, by D. 4, d(L,L) = + , I. e . ,  

L S L .  Q. E. D. 

Corollary 3.  2: If L, L' C T ,  K C S and L L' , then 

K covers L (i. e . ,  d(L,K) = q5 ) implies K covers L' . 

Proof: This i s  an immediate consequence of the transi- 

tivity of E . Q. E. D. 

The following simple result i s  also important. 

Proposition 3. 3: If D. 1 and D. 2 hold and i f  L C T  , 

then L ES 9 i f  and only i f  L = $ . 

Proof: If L = $ then d(L, $11 = L = $ by D. 1, and 

d($, L) = 9 , by D. 2, hence L E $I by definition. 
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Conversely, i f  L = $ , then by the definition of 

, d(L,$)  = c# , but by D. 1, d(L,$) = L , thus 

L = $ ,  Q. E. D. 

Theorem 3. 4: The D-axioms imply Axiom A. 1; indeed, 

i f  k c K  and d(L, I  u (K-k)) f $ then k is in every 

(K/I)-cover of L , 

Proof: Say there exists a (K/I)-cover C of L which 

does not contain k . Then, perforce, C C K - k . Let 

J = IU (K-k) , then 

d(L, I  u (K-k)) = d(L, J) 

= d(L, C u (J-C) 

"d(d(L, C), J-C) by D . 3  

Ed($, J-C) by choice of C 

SQi by D. 2. 

But, by assumption, d(L,I  u .(K-k)) d $ , so we have a 

contradiction unless no such (K/I)-cover C exists. Q. E. D. 
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Theorem 3. 5: The D-axioms imply Axioms A. 2; that is ,  

i f  M is a minimal (K/I)-cover of L and kEM - I  , and 

Q is  a minimal ((K-k)/(I u k))-cover of d(L, k) , then 

the D-axioms imply that Q is  a minimal (K/I)-cover of 

L .  

Proof: We see f i rs t  that Q i s  a (K/I)-cover of L since 

by choice of Q 

by D . 3  

since, by definition, 
k e Q .  

But also we see that M is a ((K-k)/(I  u k))-cover of 

d(L, k) since I u k C M and 

by D.3 

by definition of 
M, k e M .  

b 

Thu's, the fact that Q i s  a minimal ((K-k)/(I u k))-cover 
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of d(L, k) implies that c*(Q) < c*(M) and so, since Q 

is a (K/I)-cover of L of cost less-than-or-equal to that 

of a minimal (K/I)-cover of L , we see that Q must 

also be a minimal (K/I)-cover of L . Q. E. D. 

We wil l  need the following lemma: 

Lemma 3 . 6 :  If C is (K/I)-cover of L , X C C  - I  and 

Y C K  - I  such that X A Y = q~ and 

d(d(L, d(L,I u X)), I u Y) = 9 

then C' = (C-X) u Y i s  also a (K/I)-cover of L. 

Proof: Let N =  C - X , then 

d(L, N u X) = d(L, C) = 9 . 

But, by D. 3,  

I 

d(L,N u X) = d(d(L,I u X), N - I) . 
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Now, by as sumption, 

$ = d(d(L, d(L, I  u X)), I U Y) 

ez d(L, I u Y u d(L,I  u X)) by D . 3  

E d(d(L,I u Y) ,  d(L,I  u X)) by D.-3 . 

Then, combining this with (11, using D. 4, we have 

9 = d(d(L,I u Y),  N - I) 
e d(L, I u Y u (N-I)) by D. 3 

= d ( L , N u  Y) 

= d(L, (C-X) u Y) = d(L, C') . 

Hence, C' i s  a (K/I)-cover of L .  

Axioms on Cost 

Axiom C. 1: For  all K, K', I C S , with K n K '  = 9 , 

Q. E. D. ' 

c(1, K u K') = c(1, K) 4- c(I u K,K*) . 
L 
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Axiom C. 2: For all K, K', I C S with K n K '  = 9 , 

c(1, K) t c(1, K') c(1, K u K') . 

Axiom C. 3: Given keK C S and X, Y C K - , then 

for a l l  Z C TIK(k) , 

c(X,Z) = c(Y, Z) = c(9, Z) . 

Axiom C. 4: For all I, K C S , i f  k, k l E J  = K - I with 

lTJ(k) # ?TJ(k') and such that d(d(L, d(L,I u IT (k))), I u TrJ(k')) = $ 

and c(1, fTJ(k')) 4 c(1, VJ(k)) , 

there exists Y CTI (k') such that d(d(L, d(L,I u X)),I uY) = (b J 

and c(1,Y) c(1,X) . 

J 

then for every X C TTJ(k) 

These axioms may be interpreted a s  follows: 

Axiom C. 1 says, in effect, that the cost of a subset of 

S (with respect to I C S ) does not depend on the order 

in which we choose the subset. Axiom C. 2 says that 

the cost of a subset of S i s  not greater than the sum of 

the costs of i ts  elements. (Note that this assumption 

restricts us in  that i t  forbids cost functions that contain 
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a penalty for, say, fan-out over a certain amount. ) Axiom 

C. 3 says that all cost reductions (situations where 

c(M, k) 4 c($, k) , for some M C S ) take place with 

respect to the blocks of the partition II. The final 

axiom, C. 4, 

that if TIJ(k') 

greater cost, 

f inda  subset 

i s  the most complex. The idea here i s  

will  cover a s  much a s  II (k) and at  no 
J 

then for each subset X of TI (k) we can 

Y of ITJ(k') which covers everything 

J 

covered by X and which costs no more than X , (all 

this, of course, being with respect to the given I and L ). 

Theorem 3.7: The D and C axioms together imply 

Axiom A. 3; that i s ,  if I, K C S ,  L C T  , and k, k' E J  = 

K - I  , with II (k) * IIJ(kl) , J 

and c(1, IT (k'))  4 c(1, lTJ(k)) , 

((K - S(k)) / I ) -cover  of L and every ( (K - I$(k))/I)- 

then there exists a minimal J 

cover of L i s  a (K/I)-cover of L .  
% 
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Proof: Clearly i t  suffices to show that there i s  a t  least 

one ((K - TIJ(k))/I)-cover of L which is a minimal 

(K/I)-cover. To show that such a cover exists, we wil l  

show that under the conditions 

transform any (K/I) -cover C 

((K - IIJ(k))/I)-cover Q of L 

of the theorem, we can 

of L into a corresponding 

with c*(Q) c*(C) . 

Let C be any (fixed) (K/I)-cover of L .  Let 

X = C n TIJ(k) . 
such that 

By C. 4 we know there exists Y C TI (k') J 

d(d(L,d(L,I u X)), I u Y)= 4p 

and c(1, Y) 4 c(1, X) . Now take Q = (C-X) u Y . 
By Lemma 3. 6 we know that Q is a ( (K  - TIJ(k))/I)- 

cover of L ; it  remains to show that c*(Q) c*(C) . 
Now, by C. 1 

c*(Q) = C($,I) t c(1,Y) .+ c(I u Y,  c - (I u X)), 

and c*(C) = c(4p,I) t c(1,X) t c(l  u X, C - (1 .u  X)) . 
b 
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Now c(1,Y) c(1,X) by the above. Thus i t  remains 

only to compare the final terms. 

and let U = (C  - (I u X)) - TI.(k') , 

Let W = (C .. (I u X))nIIJ(k') , 

then 

c(I u Y, c - (I u X)) = c(I u Y, U) t c(I u Y u u, W) ( 1) 

and 

c(I u x, c - (I u X)) 

- - c(I u x, U) t c(I u x u u, W) by C . l  I 

- - c(I u x, U) t c(I u u, W) by C.3.(2) 

Now, by C. 3, 

to compare the final terms of (1) and (2). 

c(I u X, U) = c(I u Y,  U) ; thus i t  remains only 

But 

c(1 u U, Y u W) = c(I u U,Y)  t c(1 u U u Y, W) 

c(I u U, Y u W) 4 c(1 u U , Y )  i- c(I u U, W) 

by C. 1 

by C. 2, and 

which gives us 

c(I u u u Y, W) 4 c(I u u, W) 

b 

just as desired in order to make (2) less-than-or-equal 

(1). Q. E. D. 
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To end this section we point out two simple re-  

finements wEch can be made in the extraction algorithm. 

In the extraction algorithm a s  given in Section 2, 

step 1 i s  the mainmeans for rapidly reducing the size 

of K . Basically, the rule in step 1 i s  to throw away all 

elements of K which cover some part  of L .which can 

be covered more cheqdy by other elements of K . Our 

purpose here i s  to prove the intuitively obvious extension 

of this rule to the effect that i f  an element of K covers 

nothing in L (not already covered by I ) then it can be 

thrown out regardless of i ts  cost. 

,Proposition 3. 8. If k r K  - I but I covers k with respect 

to L , then there exists'a minimal (K/I)-cover M of 

L with k{ M . 

Proof: Say Q i s  a minimal (K/I)-cover of L and 

k c Q  . Let Q = I u R u k (I ,Ry k disjoint). Since I 

covers k with respect to L , this means 
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But since Q i s  a (K/I)-cover of L , we have 

$J = d(L, I u R u k) 

= d(d(L, k), I IJ R) 

But from (1) we have 

by D. 3. (2) 
- 

D. 3 

D. 3 

So, combining (2) and (3) ,  using n. 4, we get 

9 = d(d(L,I), I u R) 

= d(L, I u I u R) 

= d(L, M) 

so M i s  a (K/I)-cover of L , but 

by C.1 

by definition C . 
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Hence, M must be a minimal (K/I)-cover of L . Q. E. D. 

In the extraction algorithm, a s  given in Section 2, 

step 4 picks out only one element at a time satisfying the 

conditions given in step 3. However, the one-at-a-time 

instruction is not central to the axiom and, indeed, we have: 

Proposition 3. 9: If the D-axioms hold, then we can re -  

place step 4 of the extraction algorithm with 4 '  . Let E 

be the set of a l l  such elements (i. e. , 

If d(L, Iu E) = 9 then take 

kcK, d(L, I u (K-k)) # 9 )  . 

M(L, K/I) = I u E 

and stop; otherwise, take 

M(L;K/I) = M(d(L, E), (K-E) / ( I  u E)) . 

Proof: Inspection of the proof of Theorem 3. 5 will  show 

that it can be directly generalized to read: 
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"If M i s  a minimal (K/I) -cover of L and 

X CM - 1 ,  and Q i a  a minimal ((K-X)/(I u X))- 

cover of d(L, X) , then the D-axioms imply that 

Q is a minimal (KTI)-cover of L . 'I 

I (The proof i s  identical to that of '3.5 except that X re- 

! 

! 
places k throughout). 

The desired result now follows directly from 3. 4 

and the above modification of 3.5, for by 3 .4  we know that 

E must be a subset of every minimal (K/I)-cover and 

from the above modification of 3. 5 we know that (by taking 

X = E ) we get that 

i s  thus a minimal (K/I)-cover of L . Q. E. D. 
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4. ‘EXAMPLES 

W e  will  now give two, rather sketchy, examples 

of the above extraction algorithm, the f i rs t  being single 

output, two-level AND-OR circuit minimization, the 

second being multiple-output, two-level AND-OR circuit 

minimization. 

of their validity (i. e . ,  that the given d , and c satisfy 

the axioms). However, the validity follows easily from 

the material  in [ R-1] (especially if  one considers i t  in 

te rms  of the geometric interpretation of the 

The examples a r e  presented without a proof 

#-algorithm). 

/ 

4.1 Single Output Case 

It has been shown by Roth that the problem of 

designing minimal cost two-level AND-OR circuits can 

be reduced to a cubical covering problem [ R-1] [ R-21. 

This problem i s  exactly of the type to which the extraction 

algorithm given in this paper can be applied. For a problem 

with n input variables we get that 

S and T a r e  the set of a l l  faces of the n-cube; 
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L is a cover of the set of vertices of the n-cube 

which correspond to those conditions for 

which the circuit is to be ON ; 

K i s  a cocycle cover of L (or, i f  there is a set 

D of DON'T-CARE vertices, then K is 

a cocycle cover of L u D ); 

d i s  the sharp-product (#-product) for covers 

[ -11 : 

c the cost, can be chosen in  many ways, the most 

common being to make the cost of a k-cube 

being (n-k)t1 (this corresponds to the 

cost of a circuit being directly proportional 

to the number of inputs to logical blocks); 

4. 2 Multiple Output Case 

A more  interesting covering problem, and one 

with a nontrivial partition I T ,  a r i s e s  in the design of 

multiple output two-level AND-OR circuits. 
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In the case that there a r e  n inputs and m outputs 

we have that 

n 
S = T = ( 0 ,  1 ,X)  X I 1  ,... $ m }  . 

Let a typical element of S r ! r  T be denoted (9, i) 

i q c  mi, XI”, i E  { i , - . - , m ~  . 

L = LP L wliere, for i = 1 ,..., m , L i s  
1=1 i i 

a set 

i (g(i,* Li = {(q+.., 
i 

1 constitutes a cover 
i 

such that Ci = 

th 
of the on-array of the i output. 

K is  the smallest set containing the cocycle cover 

of each set C (see above) and such that i f  (q, i), 

{ql, j) rK with i # j and q nqld g5 then 

(q  r1 q’, i) and ( q  n q’, j) a r e  both in K . 

i 

d is the evident extension of the .sharp-product 

€or covers which a r i ses  from the rule 
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i f  q#q' = cp , i = j 

( q # q ' , i )  if i = j ,  and q # q ' #  $J 

if i f j .  

II i s  the partition which a r i ses  from the equiva- - 

lence relation Q! (on K )  such that 

(99 i) (SI, j) 

i f  and only if  q = q' . 

c i s  such that for each (q, i) rK , i f  q i s  a 

k-cube, then 

c ( $ ,  (q,i))  = (n-k) -I- 1 

and, if I n  ( (q , i ) )  # cp bnd (q,i)cl I ) ,  then J 

c(1, (4 , i ) )  = 1 

This corresponds to the cost of a circuit again 

being directly proportional to the number of inputs 

to logical blocks. The f i r s t  time we use (9, i) 

we have to pay for i ts  inputs (n-k of them), and i ts  

input to the OR of the i output; but after that th 

(since we already have'the block for q ), we only 

have to pay for i ts  input'to the output OR . 
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This .multiple output algorithm i s  closely akin to 

the multiple output algorithm developed under this contract 

by Paul Roth. His algorithm, however, introduces a far 

more compact and convenient manner for handling the sets 

IIJ((q, i)) (i. e. , in his approach; each such set i s  a singular 

cube) . 
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0. INTRODUCTION 

0.1 

Roth's Cubical Notation and calculus of cubes were 

originally developed [ R-l] for application in the minimiz- 

ation of single output, two-level AND-OR switching c i r -  

cuits. In subsequent papers [ R-W-11 [ R-K], Roth and 

others applied this theory to synthesizing other forms of 

combinational circuits but without introducing a direct 

cubical notation for such circuits. However, in 1967, 

Roth introduced an informal cubical notation for repre- 

senting arbitrary combinational circuits [ R-21, and i n  

1968 the authors developed a semiformal cubical notation 

for  multiple-output, two-level AND-OR circuits [ R-W-21. 

This variety of informal, semiformal and formal notations 

led 

some kind of formal mathematical framework which would 

the authors to consider the possibility of producing 

encompass all these diverse notations and which would 

permit the development of a general calculus for their 

manipulation. The hope was, and is, that the development 

of such a system would lead to rigorous and effective tech- 

niques for the analysis and synthesis of circuits. This 
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paper presents our results to date on the developrr,ent of 

such a general framework. 

In our initial attempts to produce a suitable frame- 

work, we tried to develop a suitable set of axioms which 

concerned the structures in  which we were interested. 

None of these axiomatic approaches was particularly 

succe'ssful, for we found that we wanted to be able to deal 

with a great variety of structures and that further research 

would result in the discovery of even more  structures. 

What we needed was a rather general approach that would 

allow us to build up "any"' type of mathematical structure 

in a uniform manner. We turned then to the search for 

such a general approach and the result was the calculus 

of a-objects given in the f i rs t  section of this paper. 

calculus of a-objects is essentially a means (a formal 

The 

procedure) for building up recursive definitions of classes 

of strings of symbols. 

such calculus which builds up classes of strings corre-  

sponding to the entities (truth tables, components, c i r -  

cuits, etc. ) which make up the subject matter of switching 

theory and which, a t  the same time, provides means for 

What we present here  i s  a specific 
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defining all  the necessary operations and algorithms on, 

and relationships between, such entities. 

The calculus of at-objects, presented in  the f i rs t  

section of this paper, i s  intended to be more than just a 

notation, or  language, for writing down the definitions of 

the entities and operations in  which we a r e  interested. 

central idea here i s  to make the definitions, a s  well a s  the 

things they serve to define, into well defined mathematical 

objects. The idea of formalizing definitions is, of course, 

not new; our approach here bears a t  least  a superficial 

A 

resemblance to Smul1yan"s formal systems [ IS']. However, 

where Smullyan's interest was primarily in developing a 

theory of formal systems, our interest i s  directed more to 

developing a calculus of definitions which i a "application 

oriented. I '  That i s ,  we a r e  not particularly interested in  

an alternative development of recursive function theory. 

Rather, we wish to develop powerful means for writing 

rigorous definitions of new structures and for proving 

results concerning them. In this paper, in keeping with i t s  

early position in the development, the emphasis i s  on the 

application to setting up the basic definitions for a formal 
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switching theory rather than in using the calculus for the 

development of theorems concerning this theory. 

Using the calculus of a-objects, a s  we develop i t  

here,  we rapidly reach a point a t  which fairly complex 

definitions and algorithms can be quite easily written 

down in a completely rigorous manner. 

pay for this convenience is that we start  from a formalism 

that is, a t  best, difficult for the uninitiated to relate to 

his prior knowledge of switching theory or Roth's calculus 

The penalty we 

of cubes. For  this reason, we give the second part  of 

this introduction over to an informal presentation of a 

version of Roth' s informal notation with examples, and at  

the end of the introduction, we present a somewhat infor- 

mal  overview of our new notation using the same examples. 

In Section 1 of this paper we present the calculus of 

a-objects. That is, we present our formal system for  de- 

fining classes of strings. The material  in this section, 

except for the examples, i s  presented without reference 

to our intended switching theory applications. In Section 2 

of the paper, we employ the a-object calculus to develop 

a selection of the basic definitions needed for a rigorous 
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switching theory. While the material  in Section 2 goes 

a s  far  a s  to define components, circuits, and presents 

a definition-algorithm for the analysis of circuits, i t  i s  

preliminary in nature. We anticipate that further study 

will result in both a shorter and a more powerful set of 

basic definitions. 

0. 2 

Informally, we think of a combinational circuit a s  

being a network of (logical) components with no feedback; 

that is ,  there i s  no signal'path from an output of a com- 

ponent back to one of i ts  inputs. Each component is ,  in 

turn, a "black box" with n inputs and m outputs which 

accepts binary input signals and responds by putting out 

binary output signals. An example of (the block diagram 

of) such a circuit i s  shown in Figure 1. In a network of 

components, those component inputs,which a r e  not fed by 

the outputs of any other component, a r e  called the pr imary 

inputs, of the circuit; and those component outputs, which 

do not feed the inputs of any other components, a r e  called 

pr imary outputs. We assume that each line in a circuit 



a b C d e f 

9 h 

Figure 1 Example of a block diagram of a circuit. 
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has a label associated with i t  (a name o r  number); 

however, certain primary inputs may have the same 

label (may be identified as  being fed by a common source 

of input signals) and w e  will also give the same label to 

(identify) all lines emanating from any given component 

output. 

Now, any component or  circuit realizes some 

binary function; that is ,  the relationship between its  in- 

put and output signals i s  a binary function. 

can, of course, be represented by a table of 1's and 0's . 
However, i t  i s  much more convenient to represent i t  by 

a table of l 's ,  O's ,  and X's , where the X ' s  a r e  used, 

as explained below, to reduce the size of the table. 

This function 

Such 

a table i s  called an Input-Output (or Truth) Table. To 

help explain this informal notation, we present in Figure 2 

the input-output table for the circuit given in Figure 1. A 

1 or  0 in a row of the table means that the signal on the 

corresponding line (input o r  output) i s  a 1 o r  0 , 

respectively. The X's have different meanings depend- 

ing on whether they a r e  in the input (left) o r  output (right) 

side of the table. In the input part, an X means that the 
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a b c d e f g h  

1 1 1 1 1 1 1 1  

1 1 1 1 1 0 1 1  

1 1 1 1 0 1 1 1  

1 1 1 1 0 0 1 1  

output does not depend on whether that input is a 1 or  

0 (given that the other input lines a r e  1 o r  0 a s  indi- 

cated). Thus, for example, the f i rs t  line of the table in  

Figure 2 can be viewed as an abbreviation for the four 

lines 

The X's in the output part  of a row, on the other hand, 

mean that that row does not specify what the output i s  on 

the corresponding output line for the input signal combina- 

tion specified in  the input part  of the row. 

example, the fourth row of the table in  Figure 2 

that output line g will  have a 1 on i t , i f  input lines a, b, 

Thus, for 

says 

and c have respective input signals 1, 1 and 0 ,  but i t  

does not say anything about what we should expect on out- 

put line h for these input signals. The advantage of 



a b c d e f  
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Figure 2 Input-Output (or Truth) Table for circuit 
shown in  Figure 1 .  (using X's in both in- 
puts and outputs). 



using the X's  is, of course, that i t  often allows for a 

much shorter table; indeed, without the use of the X's , 

the input-output table would have to have 64 rather than 

14 rows (indeed, with a m'ore judicious use of X's , i t  

is possible to get the table down'to only 11 rows). 

Now while the above table gives us the function 

relating the input and output signals of a circuit, i t  does 

not tell us anything about the structure of the circuits; 

that is ,  Figure 2 gives us a function, but i t  does not show 

us (as does the block diagram in Figure 1) that it a r i ses  

from a circuit with three AND's and two OR's.  To do 

this, to represent a circuit in a tabular rather than pic- 

torial manner, we can use another form of table, also due 

to Roth [ R-21. 

to form a "matrix" or table-of-tables which has columns 

for each input, output and intermediate line of the circuit 

and in which each subtable i s  a description of one of the 

components i n  the circuit. 

readily construct the corresponding block diagram. 

while such a table reduces block diagrams to a standard 

The basic idea, a s  shown in Figure 3, i s  

From such a table one can 

Now 

form, i t  i s  still not a "mathematical object'' in the sense 



1 1  

o x  

x o  

o x  

x o  

1 

0 

0 

0 

0 

1 1  1 

Figure 3 "Matrixtt representation of circuit shown 
in  Figure 1.  

1 1  

o x  

x o  

1 

0 

0 

1 x  

x 1  

0 0  

1 

1 

0 

1 x  

x 1  

0 0  

1 

1 

0 
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that we can manipulate i t  in  a rigorous manner. However, 

i t  was the consideration of just such circuit-representing 

"matricesf1 that originally prompted this research. 

One of the aspects of such a circuit-representing 

"matrix" which stimulated research is  that, given such a 

"matrix, I t  i t  is not particularly difficult to produce from 

i t  a table which gives an tfanalysislf of the corresponding 

circuit. That is ,  one can produce a table, such a s  that 

in Figure 4, which shows the various combinations of 

signals which can appear on the lines of the circuit. Note 

that in  Figure 4 we have again used X's . Here they 

mean (as  in the input part  of Figure 2) that the corre-  

sponding line can have either a 1 o r  0 on i t  when the 

other lines a r e  a s  indicated. (Again, the use of X's  

reduces the size of the table, in  this case from 64 to 

27 lines.) 

We have now introduced three kinds of tabular 

representations of circuits. 

be definite relationships between the different types of 

It i s  clear that there must 

tables and that these relationships a r e  of an essentially 

mathematical nature. However, since the different types 
, 



a b c d e f A B C g h  

1 1 1 1 1 1 1 1 1 1 1  

1 1  1 1 0 x 1 1  0 1  1 

1 1  1 1 x 0  1 1  0 1  1 

1 1 0 x 1  1 1 0  1 1  1 

l l O X O X l 0  0 1 0  

1 1 0 x x 0 1 0 0 1 0  

1 1 x 0 1  1 1 0  1 1  1 

1 l X O O X l 0  0 1 0  

1 l X O X 0  1 0  0 1 0  

0 x 1 1 1 1 0 1  1 1 1  

o x 1  1 o x o  1 0  1 1  

o x I l x o o l o l l  

o x o x l l o o  1 0  1 

o x o x o ~ x o o o o o  
o x o x x o o o o o o  
o x x o  1 1  0 0 1 0  1 

o x x o o x o o o o o  
o x x o x o o o o o o  
x o  1 1  1 1  0 1 1  1 1  

x 0 1 1 0 x 0 1 0 1 1  

x o  1 1 x 0 0  1 0  1 1  

x 0 0 x 1 1 0 0  1 0 1  

x o o x o x o o o o o  
x o o x x o  0 0  0 0 0 

x o x o  1 i o 0  1 o 1 

x o x o o x o o  0 0 0  

x o x o x o o o  0 0 0  

Figure 4 Analysis table of circuit shown in 
Figure 1 .  
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of tables a r e  "informal objects, ' I  i t  i s  not possible to 

build up directly a calculus for their manipulation or  

which displays these interrelationships. The reason for 

this i s  that while we have examples of the different kinds 

of tables, we do not have the precise definitions which are 

necessary to make mathematical manipulation possible. 

We need to be able to describe, o r  define, the tables in 

such a way that we can decide precisely when an "arbi- 

t ra ry  table" of l 's,  Ols, or X 's  i s  one of the kinds of 

tables we a r e  interested in. We need precise means by 

which to specify the parts of a table; we need to define 

basic operations on tables and par ts  of tables. 

for doing these things will be the cy-object calculus. 

Our tool 

0. 3 

The problem of formalizing the above informal 

tabular notations i s  largely one of replacing the tables 

with a more readily describable and manipulatable form. 

To do this we have taken the route of reducing everything 

to strings of symbols. 

we use in the formal development i s  the set (0, 1, X, G, (, ) } ; 

The actual set of symbols which 
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however, in this introduction, we shall use some additional 

symbols in order 1) to make i t  easier to relate to the 

tabular notation, and 2) to avoid long strings. We pro- 

ceed by example. 

Consider the following AND-circuit and it-s input- 

output table. 

a b  

C 

The basic idea of our notation i s  to represent the table 

of such an  AND by a string of the following kind: 

(In the actual formal notation, the "labels" a, b, and 

c would be strings of l 's ,  O f s t  and X ' s  in angle 

brackets ( ( and } ) and the parentheses and vertical 

slashes would be replaced by appropriate configurations 
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of brackets. ) 

Note that in this notation, a row of the matrix 

becomes a string (delineated by parentheses) with the 

X-entries omitted, and with the inputs and outputs sepa- 

rated by a vertical slash. Then’the component i s  repre- 

sented by a string of such row-representing-strings 

delineated angle brackets. 

input-output-(or truth)-table of a circuit, we do i t  in just 

the same way. Thus table 2 i s  represented by the string: 

If we want to represent the 
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To represent a circuit (combinational network of 

components), i t  suffices to give a string which is an 

appropriate ordering of the strings representing the 

individual components. Thus, Corresponding 

we have the string: 

to Table 3, 

To represent the analysis-table of a circuit by a 

string, we proceed in a manner similar to the above. In 

that the notation is rather bulky, we will not write out the 

string corresponding to Table 4. 

The natural question at  this point is: What have 

we gained by going to such a string notation? 

is that we shall be able to work with these strings in  a 

rigorous manner. In particular, we shall be able to say 

The answer 

just which strings correspond to possible components and 

circuits and we will be able to present precise rules for, 
+ 
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say, going from a string representing a circuit to one 

representing an analysis table for the s a m e  circuit. 



15 

1. THE a-OBJECT CALCULUS 

1. 0 Introductory remarks 

.In this section we develop the rudiments of the 

a-object calculus. 

for  writing recursive definitions of strings (finite se- 

quences) of the symbols 0, 1, x, E , ' ) ,  and ( . The 

system i s  formal in that it has a "grammar, I' or pre- 

cise set of rules, which effectively define what we mean 

by a "definition" and there i s  an accompanying set of 

precise rules, the "semantics, which (albeit not neces- 

What we present i s  a formal system 
- 

sarily effectively) determine the set of strings "defined" 

by a given ''definition" or "string of definitions. 'I 

Inasmuch as the formal aspects of the calculus play only 

a minor role in this preliminary paper, the reader can 

comprehend the material  presented in Section 2 of this 

paper without appreciating the formal aspects of the 

definitions. That is, in this paper, one can view the 

a-object calculus as just a notation.. We wish to point 

out, however, that even in this paper, the formal frame- 

work assures the completeness ,of the definitions in the 

sense that 1) we have no undefined terms floating around, 
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and 2) every definition defines a definite class of strings 

whether or  not i t  is the one desired. 

In Section 1.1 the first  four pages a r e  dedicated to 

defining our formal notion of a ("etring of 'I) "definition( 9). 

On the fifth page we finally get to the question of the ' h e a n -  

ing!' of a "definition; I'  that is, to the rules which deter- 

mine the corresponding class of strings. 

manner of presentation is well justified mathematically, 

i t  makes i t  somewhat difficult for the reader to get any 

feeling for what is going on; thus we wil l  close these 

introductory remarks with an informal description of the 

a-object calculus viewed a s  a notation for writing recur- 

While this 

sive definitions. 

The basic idea of the a-Object Calculus a s  a 

notation i s  to provide a simultaneous means for defining 

and naming classes of strings on the alphabet 0, 1, X, G, 

>, and ( . The %ames" a r e  important for they allow 

us to refer to a class of strings when we a r e  defining 

further classes of strings, or when we have a recursive 

definition. It allows us to refer to a given class in build- 

ing up i ts  own definition (indeed this self-referral aspect 
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is the essence of a recursiv 

example of such a definition would be the following 

definition of the class named, say, "STRINGS-OF- 

ONES. If 

A. 1. 

A. 2. 

A. 3. 

The symbol t i l l )  i s  in the class STRINGS- 

OF-ONES. 

If A and B a r e  strings in  the class 

STRINGS-OF-ONES, then their concaten- 

ation AB i s  in the class STRINGS-OF- 

ONES. 

No string i s  i'n the class STRINGS-OF-ONES 

unless i ts  being so follows from A. 1 and/or A. 2. 

As an  example of the use of the class STRINGS-OF-ONES 

i n  a further definition, we might define a class called, say, 

BSOBPOBSOO (for "Bracketed Strings Of Bracketed Pa i rs  

Of Bracketed Strings of Ones"). 

B.1. If A and B a r e  strings in  the class of 

STRINGS-OF-ONES , then (((A)(B))) 

is a string in the class BSOBPOBSOO. 
> 

B.2. e strings in the class 
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BSOBPOBSOO, then (AB) i e  a string in 

the class BSOBPOSBSOO. 

B. 3. No string i s  in  the class BSOBPOBSOO 

unless i ts  being so follows from B. 1 

and/or B. 2 and the definition of STRINCS- 

OF-ONES. 

(Examples: ( ( (111) (1111) ) ) and ( ( (11) (11111) } ) a r e  in  

BSOBPOBSOO by B. 1 and the definition of STRINGS- 

OF -ONES; and ( ( (111) (1111) ) ( (11) (11111) ) ) is in 

BSOBPOBSOO by the above and B. 2. ) 

Viewed as a notation, the a-object calculus pro- 

vides a notation for writing definitions of the above type 

in a uniform and condensed manner. 

notational conventions: 

There a r e  four main 

1. Given that we have defined o r  a r e  defining 

a class of strings named, say a ,  and we 

have a string or  symbole s standing for a 

string (such a s  A and B above), then 
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we write 

as an abbreviation for "s i e  a string in 

the class a'. I '  Thus, for example, 

STRINGS-OF-ONES [ 13 means 

1 i a  in the class STRINGS-OF-ONES; and 

SSOBPOBSOO[ (A)]  means "the string 

(A) , consisting of the string (denoted 

by the variable) A enclosed in brackets, 

i s  in  the class BSOBPOBSOO. I '  

"the symbol 

A eequence a [ E  ],a [ E 3 ,...,an[ en] i s  1 1  2 2  2. 

read a s  a conjunction; i. e. , the above would 

al ' be read a s  ' I  s 1 

and s i s  a string in the class 

s is a string in the class a . I' n n 

3. We errplr3r an arrow * to denote the 

i s  a string in the class 

and a2'". 2 

"if.. . then" part of the sentences in a 

definition, and we enclose the whole abbrev- 

iated sentence in parentheses. Thus A. 2 

i e  written 
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(STRINGS-OF-ONES [ A],  STRI 

ONES [ B] * STRINGS-OF-ONES [ AB]). 

The arrow is also used in abbreviating 

sentences such a s  A. 1 where there is no 

"if". Where there is no ' ' i f tr  nothcng is 

written to the left of the arrow and thus 

A. 1 is abbreviated as 

(+ STRINGS-OF-ONES [ 11) . 
4. Finally, sentences such as A. 3 and B. 3 

a r e  omitted. Thus, the above examples of 

definitions can. be rewritten as: 

(-t STRINGS-OF-ONES [ 13) 

(STRINGS-OF-ONES [ A ] ,  STRINGS-OF-ONES [ B] * STRINGS-OF-ONES [AB] 

(STRINGS-OF-ONES [ A ] ,  STRINGS-OF-ONES [ B] + BSOBPOBSOO [ (((A)(B)))]) 

(BSOBPOBSOO [ ( A ) ] ,  BSOBPOBSOO [ (B)] *BSOBPOBSOO [(AB)]) . 

Some further and important simplifications of the 

notation a r e  given in Section 1. 3. 
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1.1 Formal presentation of the a-object calculus 

Let the symbols 0, 1, X and (zero, one, exJ 

and null) be called primitive-objects. We then define 

an object to be any string in the 'smallest set of strings 

satisfying the following definition: 

1. a l l  primitive-objects a r e  objects; 

2. i f  x and y a r e  objects, then so is  xy ; 

3 .  i f  x i s  an object, then so i s  (x) . 

O 2  we say they a r e  equal 1' Given two objects 8 

and write 0 = O 2  i f  and only if they a r e  identical as 1 

atrings on the alphabet ( O J 1 ,  X, G, (, ) 1 . 
We wish now to present a general method for 

defining various subclasses of the class of objects. Each 

definition will  define a class (possibly empty) of objects 

with a given name. If the name is,  say, a we call the, 

resulting objects (if any) a-objects. 

be called variables. By a formal-term .-.I- ~ I-- we mean ----- .- - 
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1. 

2. 

3. 

a variable o r  an object; 

if A is a formal term, then (,A) i s  a formal - 
term; 

i f  A and B a r e  formal terms, then so is A B .  - - - 

A formahdefinition of a-objects in terms of 

. . . , Pn-objects will  consist of a (finite) sequence of Pl, 
--.- formal-expressions of the form 

where, for i = 1,. . . , 8, yi E (a, P,, * 3 Pn> 8 xi is a 

formal term, and, for  k = 1,. . . , 4  , each Yk is a 

formal-term in which no variable occurs that does not 

occur in at least one of the X A formal-expression 

will  be said to be a basis-expression if  y # a for i 

i o  

--- 

i = 1,. . , , s ; otherwise, i t  will  be called an inductive- 

expr e ----- s sion. - Each f ormal-definition will: contain at  least 

one basis-expression, and in a formal-definition, a l l  the 

basis-expressions will  come before the inductive- 

expressions. Let D ( a ,  {pl,. . . , Pn}) denote a formal- 
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pn-o b j ec t s. 1"**' definition of a-objects in terms of f3 

Given a formal-expression such a s  (1) above, let 

yl,. . . , 
assignmetlt of these variabies, we mean a map A of 

be the variables which appear in it. By an YIl ' 

- 
{yl,. . . , y } into the class of all  objects; thus, - A(yi) 

is an object for all i 

n 

Uniformly eubetituting - A(yi) 

for yi in X and Yk for i = 1 ,..., n , j = 1 ,..., 8 ,  
j 

k = 1,. . . , t . 
new formal-expression 

in the given formal expression, we get a 

which we call the A-instance of the original formal- 

expr e s sion. 

- 

We shall also find it convenient to be able to speak 

of an instance of a formal term. F o r  this we use the same 

notions a s  in the above paragraph. Clearly, every instance 

of a formal term is  an object. If X i s  a formal term 

and 9 is an object which i s  an instance of X , then we 

say that 9 i s  of form X .  --- 
Given a formal-expression such as (1) above, we 
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. .  

call y [ X 1,. . . , y [ X ] 

and a[ Y1], . . . ,a[ Y ] the right-aid: of the expreeeion. 

The symbole a, p,, . . , Bp occurring in an expreeeion 

a r e  called names. 

the left-side - of the expreeeion, 1 1  B e  

t 

-- 
By a ---___ def in i t ion-s t ra  - we mean a (finite) sequence 

of formal-definitions such that: 

1. No name occurs on the right-side of the formal- 

expressions in more than one formal definitioq; 

the f i rs t  definition in the sequence is 2. 

('P[OI, m1, ?[xl,P[a): 
3. no name occurs on the left-eide of a formal 

expression unless i t  has already occurred on the 

right-side of a formal-expres sion appearing 

earlier in the sequence. 

It is  easy to see that a definition-string will always 

be of the form 
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Taking P = a we shall now give rules which 
0 

associate with each a i = O , l , .  . . , n  in  9 ,  a unique 

(but possibly empty) class of objects which we then call 

i '  

the class of a:objects (with respect to D ). Let 

Bo = f i ,  and for i > 0 ,  let Bi = {ao,...,a } . 
Given D ,  then for  each a the class of - i '  

- 1 

i -1 

-- 
ai-objects -- is defined to be the smallest class of objects 

such that: 

If 8 is an object and D ( a  B ) contains a formal 
i' i 1. 

expression 

then 0 is an a -object; 
i 

if D ( a  B ) contains a formal-expression i' i 2. 

and there exists an assignment A of the variables - 
occurring in this expression such that the A-instance 

j = 1, ..., s then, for k =  1 ,..., t , 8 '  i s  an 

ai -0 b j ec t. 

k 
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(OBJECT [XI, OBJECT 

(OBJECT [( (X) (Y) ) l  - 
OBJECT [ xy ] )  

- 

Inspection will  show that the class of OBJECT-objects 

defined by &' is precisely the class of all objects and 

that the class of PAIR-objects i s  precisely the class of 

all objects of the form ((x)(y)) . 

1. 2 Functione and relations 
---I_----___--_I----- 

"Conventional mathematics" deals with sets, 

relations and functions while we a r e  dealing here only 

with objects (strings) and classes of objects. 

we will find it convenient, a t  least for expository pur- 

poses, to introduce notions analogous to the set theoretic 

However, 

notions of relation and function. 

outside our theory in the sense that we will  not define them 

These notions will be 

by means of definition-strings,. 

We proceed a s  follows: F i r s t  of all, we say that 

an object 0 is a pair if i t  is of form ((x) (y)) (note that - 
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0 

we have already given a string-definition of 

which agrees with this informal definition). 

that the class of a-objects is a relation if  every a-object 

We then say 

is a pair. Finally, we say that the class of a-objects is 

a function_if, 1) i t  is a relation, and 2) for all objects 

el, Q2, and e3 if ({e1)(e2)) and {(el)(e3)) a r e  

a-objects, then 8 = e3 . 
It is worth noting that w e  may, of course, for each 

2 

a interpret the class of a-objects a s  a set, or  as a predi- 

cate. For  example, we later define CIRCUIT-objects. 

The class of these objects is naturally viewed a s  a set, 

but, on the other hand, we can also view i t  as  a predicate 

in  the sense that if an  object is a CIRCUIT-object {is in  

the class, satisfied the definition), then it has the property 

of being a circuit. 

1. 3 Informal simplifications of the a-object calculus - ----- --_____________ __________.___^-- ---. -- -- 
While it is perfectly possible to present our formal 

definitions purely within the formalism given above, i t  

is clearly to the advantage of both the reader and the 

writer to introduce a number of conventions and short cuts 
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into the notation. 

conventions: Firs t ,  eome which a r e  purely notational 

or  matters of format, and eecond, we introduce _.----.- definition- ._-- 

schemae; that is, definitidna with variables running over 

We will now introduc 

the set of class names as well a s  over objects. 

As regards notation and format, each 'formal 

definition will be written a s  a "paragraph" headed by the 

name (or names) of the class of objects being defined, 

and then followed by the formal-expressions, one-to-a- 

line, which make up the formal definition. Furthermore, 

the name of the class being defined will  be deleted from 

the right-side of the formal expression. Thus our 

Example 1 would appear a s  

P -objec ts  

OB J E  C T -0 b j ec t s 

(OBJECT[x], O*BJECT[y] -(x>, xy) 
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Since there will be many definitions involving 

pairs (or PAIR-objects), we shall often find i t  convenient 

for any objects 8 and 8 to write 8 18 o r  ( € I l l  €I2) 
1 2 1 2  

The idea of a definition-dchema i s  quite simple. 

A l l  we mean i s  a formal-definition which contains vari- 

ables standing for names a s  well a s  variables standing 

for objects. For  example, there will be many situations 

when we will have defined some class, say the class of 

a-objects, and we will  want to then define the class of 

"all bracketed strings of .a-objects, I' i. e., the class of 

where all  the x. all  strings of the form (x 1 2  x * * *  Xn> 

a r e  a-objects. Rather than write out a complete formal- 

definition each time this kind of situation a r i ses  for a new 

choice of a , 

as follows: 

1 

we write out a general definition schema 

B-STRING(@) o r  BSTR(a) 

(4x3 - (x)) 
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Given this general definition, we can now define certain 

new classes of objects without writing out all the formal 

expressions. Fqr example, we can denote the class of 

"all bracketed strings of bracketed strings of primitive 

objects" by B-STRING(B-STRING(P)) . 
The use of such definition schemas not only cuts 

down on the amount that we have to write, but even more 

important, i t  helps to provide a unifying thread in a 

definition string by pointing out where different formal 

definitions have the same underlying form. 

Definition schema wil l  be particularly useful for 

dealing with relations and functions. To begin with, we can 

define the notion of the domain and image of a relation or  

function a with no trouble a t  all: 

DOMAIN(a) or  DOM(a) 

(@[XI Y1 +XI 
IMAGE(a) or  IM(a) 

(4x1 Y l  -+Y) e 

(Note that DOM(a) and I M ( a )  a r e  defined for any choice 
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of a though these classes wil l  be empty if  no a-objects 

a r e  pairs; however, we will only use these definitions 

when we a r e  dealing with relations or  functions. ) 

The rea l  use of definition schema i n  connection 

with relations and functions will be to extend or "lift" a 

relation or function from one domain to another. We  now 

give the definition schema for ueveral such "lifts". 

lifts will  prove very valuable later in  the paper. 

These 

1.4 Three lifts for relations 
-_----------I-I_ 

Let CI be a relation, that is, asBUme every 

a-object i s  of the form X I  y . 
tion schemas define two new relations Z(a) and U ( a )  

and a new predicate A ( a )  These definition schemas 

may, of course, be applied to any a whether or not i t  

i s  a relation; however, we are only interested in  the 

Then the following defini- 

case where a is a relation and, indeed, in  the inter- 

pretations given with the definition schema, we assume 

that a is a relation in  which every a-object is of the 

form (x) I (y) (i. e., 

of the form (2) ), 

a is a relation between objects 
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1. 

2. 

aa) 

Interpretation: Z(a) is  the extension of a to the 

relation between DOM(a) and BSTR(IM(lr)) such 

that X I  y i = 1,. . . , n a r e  a-objects i f  and only 

if X I  (y1y2 . . . yn) is- a Z(a)-object. However, if 

yi , a r e  not objects of form (2) , 

then the "if" part of the above interpretation may 

i '  

i = 1,. . . , n , 

Interpretation: O(cu) is the extension of a to the 

relation between BSTR(DOM(a)) and BSTR(IM(a)) 

such that for DOM(a)-objects al, . . . , a and n 

IM(a)-objects bl, . - .  , b we have (a 1 2 e * *  a 
m 

. . . b ) i s  a O(a)-object i f  and only i f  (blb2 m 

ai[  bj i s  an a-object for  all  i and j . Again 

this interpretation assumes that the a 

a r e  always objects of the form (x) . 
and bi i 
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Interpretation: A(a )  i s  the predicate consisting 

of all BSTR(DOM(a))-objects (a  a ... an) such 

that a. 1 a is an a-object for  1 L i < j L n . 
1 j  

(Again we assume each a i s  of the form (z)). i 

A (4 

1. 5 Lifts for functions -- 
W e  now introduce a number of lifts for functions 

which allow us to extend functions to more complex do- 

mains and images. 

particular use in  Section 

define the analysis of a circuit .in a very succinct and 

natural manner. 

These particular lifts will  be of 

where they will permit us to 

As in the case of the lifts for relations, 

we will given an interpretation of these lifts which fi ts  our  
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applications rather than the general case where a is 

arbitrary. 

1. FWa) 

Interpretation: If a is a function of H single vari- 

able, that is, i f  a l l  a-objects a r e  of the form 

n (x) 1 (y) , then for DOM(a)-objects a 1,- 1 a 

and IM(a)-objects bl, * .  . , bn , 

(ala2 . . . an) I (blb2 . . . b ) is a FZl(a)-object 

if and only i f  a 1 b 

Thus a a a is a string of arguments for a 

and blbZ . . . b 

we have 

n 

i s  an a-object for i = 1,. . . , n . a i  

1 2 " '  n 

i s  the corresponding set of values. n 

FZl( Q) 

(ab1 Y1-+> I (Y)) 
(FWa)[(x)  I ( Y ) l ,  FWa)[ (w)  I (4 -+w) I (F)) 

2. (4 

Interpretation: Here a is assumed to be a function 

of two arguments; that is ,  each a-object i s  assumed 

to be of the form (x)(y) I z . 
i s  that if all the second arguments (the (y)'s ) in  

The idea of FX2(a) 
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the a-objects a re ,  say, P-objects, then we 

wish to replace the second argument by B-STRINGS 

of P-objects and get B-STRINGS a s  values. 

' FZ2 ( a) 

(@[(X)(Y) I 1 + (X)((Y))  I (z)) . 

(F122(a)[(x)(y) I (Z)lJF122[(x)(v) 1 (w)l 4(x)(Yv) I (zW)) * 

Thus, if we have 

then we get 

CY[ (a)(bi) I ci] for i = l , . , . ,  n , 

FZ=t(a)l (a)((bl) (bZ)... (b,)) I (clcz... C n ) l  * 

3. F O 2 f a )  

Interpretation: Given that we have a-objects (a b I c ) 

for i = 1 ,..., n, j = 1 ,..., m , then, we get 

i j  i j  

(al ... an)(bl ... b ) I (c11c12 ... m nm 

is  an  F02((u) object. Thus, F 0 2  lifts a function a 

to a function ranging over B-strings of the arguments 

of a! . 
( F m d x y  I 21 (X)Y I 4 
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. 

4. FII(a) 

Interpretation: If a is say a function of two 

arguments, say, a:B  X B  -B where B is the 

class of, say, P-objects, then fo r  any B-STRING(P) 

C = b b  b we get 
s 1 2 " ' *  n 

Gla( .  . .a(a(x , x ), x ). . . , 
1 2  3 

i s  in  FII(a). 

FII(a) 

(4 (x) (Y) I 4 - ((x) (Y)) I 4 
( F W d x I  Y l r 4 ( Y ) ( z )  I wl -(xz) I 4  

5. FPl(CY) 

Interpretation: Given a function a of one argu- 

ment, this lift changes i t  to a function of one 

argument which takes PAIR objects a s  arguments 

and takes the value of a on the f i rs t  object in the 

PAIR a s  its value. 
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6 .  FP2 (a) 

Interpretation: Same as FPl only it picks out 

the second object in the PAIR. 

FP2 

(ab4 YI, PAIR[(zlx)I -44 x) I y) 

7. INVERT-ARG(a) or IA(a) 

This definition schema does not give us a l i f t ,  but 

i s  useful in producing lifts, 

the order of the arguments of a two-argument 

What it does is reverse 
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2. 

2. 0 

BASIC DEFINITIONS OF SWITCHING THEORY 

Our purpose in the remainder of this paper will 

be to write down a definition-string 

significant subset of the structures, 

which will  contain a 

relations, ana operz- 

tions (functions) , which we feel a r e  basic to {combina- 

tional) switching theory. The goal of this particular sec- 

tion will  be to define component and circuit and show how 

to analyze a circuit (in terms of our formalism). The 

f i rs t  subsection defines some preliminary structures, the 

second subsection defines .some basic operations and r e -  

lations, the third subsection contains the definition of a 

partially specified component and circuit, the fourth 

subsection gives the definition of completely specified 

components and circuits, and the fifth subsection presents 

the analysis operation. 

2.1 Some basic structures 

In this subsection we define the basic structures 

of the subject. We start  the definition-string. The 

classes of objects defined here a r e  generally not of much 
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interest in themselves, but they provide a jumping off 

point for defining the classes of objects of interest in 

switching theory. In te rms  of the informal notation, 

what we do here i s  essentially to define the idea of arbi-  

t rary tables of lis, 0'8, and X ' s  (i. e. ,  tables not 

necessarily having anything to do with circuits) of the 

general form of the tables in  Figures 2 and 3. 

P-objects 

(3 091, x, 3 
I OX -objects 

(-+ 0,1, XI 

IO-objects 

(+ 0,1) 

OBJECT-objects 

(PCXI *XI 

(OBJECT [ x], OBJECT [ y] * (x), xy) 

IT EM -objects 

(OBJECT [ (x)] * (x)) 
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Notation: W e  shall often write X I  y or (XI  y) to 

abbreviate ((x)(y)) . 
We turn now to defining the basic concepts employed 

in this treatment of switching theory. 

CUBE -obj ec t 

(B-STRING(P)[ XI 4x1 
(We wil l  not make much use of CUBE-objects in 

this paper since we wi l l  be using LABELLED- 

CUBES (see below); however, the "traditional" 

calculus of cubes can be developed quite easily 

from this simple concept. ) 

LA BEL -obj ec t 

(B-STRING(XO)[x] *x) 

(In the introduction, we used lower case letters 

for labels to formalize them by the above strings. ) 

PRIMITIVE-LABl2LLE.D-CUBE- o r  PL-CUBE-object 

(LABEL[ u1 * (UO), (Ul ) ,  (a), 



41 

LAB ELLED -CUB E - or  L- CUB E -ob j ec t 

(B-STRING(PL-CUBE)[ X] X) 

(There is a direct relationship between LABELLED- 

CUBES and logical terms; e. g. , if a, b, and c 

a r e  labels, then the L-CUBE 

( ( a 9  (bo> (ex> ) 

corresponds to the logical expression 

- 
aL(cvE) = ab . ) 

LABELLED-COVER- or  L-COVER-object 

(B-STRING(L-CUBE)[ X] *x) 

(One can think of an L-COVER as a disjunction 

of the logical terms corresponding to L-CUBES. ) 

c 

LABELLED-SINGULAR-CUBE- or LS-CUBE-object 

(L-CUBE[ x], L-CUBE[y] * ( x y ) )  . 

2.2 

In this subsection we introduce a number of rela- 

tions and operations which wil l  be employed in the next 

subsection to go from the general objects defined in the 
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preceding subsection to precise characterizations of t 

objects corresponding to components and combinational 

circuits. The most important (and most complex) oper- 

ation (or function) introduLed in this subsection is 

REDUCTION. Essentially this operation reduces a 

labelled cube down to i t s  shortest logical equivalent by 

eliminating redundancies and contradictions. Using this 

operation we can easily define an ope ration INTERFACE 

corresponding exactly with Roth's interface operation 

[ R-W-21. REDUCTION wil l  also be used in later 

definitions. 

The first  relation we define is  the congxuence 

relation on CUBES. Intuitively, two CUBES a r e  congru- 

ent i f  they a r e  identical as strings or  i f  both contain the 

primitive object 5 (null). 

CONGRUENCE- or  CONC-objects 

(CUBE[ U] + u I  U) 

(CUBE[ ( U ) l  + (+) I (.), (.U) 1 (;)I 

(CONGC uI v] + V I  u) 
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Notation: Given objects u and v , w e  shall generally 

write u = V  to denote that uI v is a CONC-object. 

We now define the negation or complement of the 

above operation. 

Notation: Give objects u and v , we shall generally write 

u dv to denote that u I v is a NCONG-object. 

We turn now to the consideration of LABELLED- 

CUBES (L-CUBES). We f i rs t  define an equivalence oper- 

ation of L-CUBES; to wit, two L-CUBES we considered 
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to be ''equal" i f  they are identical as B-STRINGS of 

PL-CUBES up to a reordering of the constituent 

PL-CUBES. 

W e  next define the relation OCCURS (and i ts  

complement). 

whether or not a given PL-CUBE occurs in a given L-CUBE. 

The relation we a r e  expressing i s  that of 

OCCURS-objec t 

(PL-CUBE[ U] -+ U I  (u)) 

(PL-CUBE[ U] , L-CUBE[ (w)],  OCCURS[ u J (w)]  , 
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NOT -OCCURS-o b j ec t 

(LABEL[ (u)] , LABEL[ (.}I, U’$V,IOX[ p], IOX [ q] 

* (UP) I ((v4))) 
(PL-CUBE[ u}, L-CUBE[ (v)], L-CUBE[ (w}], 

W e  can now define the reduction operation. 

REDUCTION- o r  REDUCT-objects 

( L A B E L M  4 ((d)) I x, ((u1)) I ( ( U W Y  ((UO)) I ( ( U W  

(L-CUBE[ (x)] , L-CUBE[ y] , PL-CUBE[ u] , OCCURS[ uI (x)] , 

REDUCT[ ( x }  I Yl -+ (xu) I Y) 

REDUCT[ ( x }  I Y l  * (X(UX)) 1 Y) 

(L-CUBE[ (x)] , L-CUBE[ y], PL-CUBE[ (ux)] , 

(L-CUBE[ (x)], PL-CUBE[ (uO)], OCCURS[ (ul) 1 (x)] 
(x(u0)) I a 

* (x(u1)) IC)  

(L-CUBE[ (4, PL-CUBE[ (ui}], OCCURS[ (UO) I (x)] 

(L-CUBEI (X}l , ?-CUBE[ ( Y ) l  Y REDUCT[ (x) I (Y)I# IO[ PI , 
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Note that the above definition also provides an 

algorithm for computing the REDUCT of any L-CUBE. 

We now define 

REDUCED-LABELLED-C’UBE- or  RL-CUBE-object 

(L-CUBE[ X] , REDUCT[ x I X] -+ X) 

Finally we define the operation INTERFACE- or  

INT -object , 

Given RL-CUBES’ x and y , we shall often write 

xn y for their interface; i. e.,  for that object z such 

that INT[ xy I z] . We shall also write n [ x y  I z] for 

INTlxyI zl - 

2. 3 (Partial) Components and circuits 

We a r e  now in a position to give initial definitions 

fo r  the concepts of components and (combinational) c i r -  
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a b c  

1 1 1  

cuits. 

will deal with what we shall call partial-components; 

i. e . ,  components whose behavior may not be specified 

for all possible combinations of input signals. 

of a partial-component suffices for the defining of-a gen- 

e ra l  concept of a combinational circuit. 

cations involving .don't-care conditions would seem to 

require the use of the notion of partial-components and 

partial-circuits; however, in order to provide a straight- 

forward concept of the analysis of a circuit, we shall, 

in the next two subsections, introduce one definition of 

a complete-component. 

The definitions we shall give in this subsection 

The notion 

Certain appli- 

What we wish to do i s  extract the essential features 

of Figure 2 (in order to define components) and Figure 3 

(in order to define combinational-circuits). 

It is convenient to begin by specifying the type of 

object which corresponds to a row in a table such as that in 

Figure 2. F o r  this purpose, we shall use LABELLED- 

SINGULAR-cubes (LS-CUBES). Thus, we use ((al) (bl) [ (cl)) 

to represent the f i rs t  row 
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of the table for a two-input AND. However, not all 

LS-CUBES wil l  o r  can be used. F i r s t  of all, w e  cannot 

employ LS-CUBES such a s  ((al) (bl) 1 (al)) since the 

label '!at1 occurs both a s  an  input and an output label 

and while this may be a way of representing !'feedback, 

i t  is clearly out of place in  a definition of combinational 

circuits. Secondly, in order to keep the notation a s  

compact a s  possible, we will  want to res t r ic t  ouselves 

to LS-CUBES ( x y )  where both x and y are REDUCED- 

LABELLED-CUBES (RL-CUBES). Thus, for the objects 

corresponding to the rows of the informal representation, 

we define 

ACY CLIC-REDUCED-LABELLED-SINGULAR-CUBE- 

or  ARLS-C UBE -ob jec t s 

Note that what we have done to assure  the desired 

acyclicity (no-feedback) i s  to make use of the fact tkiat i f  
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x and y have a label i n  common, then the REDUC 

( x y )  will be shorter than ( x y )  . 
W e  a r e  now in a position to define the concept of 

Such a component will  a partially specified component. 

f i r s t  of all be a B-STRING of ARLS-CUBES. 

i t  i s  again necessary to introduce additional conditions 

to insure 1) that there i s  no feedback, and 2) that the 

logical function realized by the component i s  single 

valued. 

requirement on a table that no two rows specify different 

However, 

This second requirement corresponds to the 

output signals for the same input signals. 

the desired condition, i t  suffices to specify the correct 

relationship between pairs  of ARLS-CUBES and then 

employ a lift (from Section 1) to extend i t  to B-STRINGS 

of ARLS-CUBES. 

ARLS-CUBES is as follows: 

To realize 

The desired relation on pairs of 

PARTIAL -C OMPONENT -CONDITION- or  

P C COND -0 b ject s 
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Ueing the above, we then define a partial component 

a s  follows: 

PARTIAL-COMPONENT- or  P-COMP-object 

(BSTRINC(ARLS-CUBE)[ x], O(PCCOND)[ X I  x] +x) 

Informally, a combinational circuit i s  just a 

collection of components interconnected in such a manner 

that there is no feedback. To capture this notion within 

our 'formal framework, we define a combinational circuit 
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to be a B-STRING of P-COMPS such that, to put it 

somewhat informally, the output labels of a P-COMP 

in the string only appear as input labels of P-COMPS 

appearing to i ts  right in  the string. 

notion in a formal manner, we f i rs t  define a relat$on 

between ARLS-CUBES and then use a combination of lifts 

to produce the desired definition of combinational-circuit. 

The actual relation employed tests two things: Given a 

pair of ARLS-CUBES, it tests to see 1) that the second 

does not "feed back" to the first ,  and 2) that they have 

To capture this 

distinct output labels (this is  to insure that "physically 

distinct circuits have "physically distinct" output s) . 
The relation i s  formally written as  follows: 

COMBINATIONAL -CIR CUIT - C ONDITI ON- o r  

C C - C OND -ob j ec t 

(ARLS-CUBE[ I y] , ARLS[ CUBE[ u 1 
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W e  then define 

PARTIAL-COMBINATIONAL-CIRCUIT- or  

P C  -CKT -object 

(B-STRING(P-COMP)[ x] , A(O(CC-COND))[ x]) 

Note that the 0-lift extends CC-COND to a 

relation between P-COMPS and the A-lift extends the 

new relation to a predicate on B-STRING(P-COMP). 

2. 4 Completely specified components and circuits 

In the preceding section we defined the class of 

objects corresponding to partially specified components 

and circuits. In this section we will  give one definition 

for completely specified components and circuits (those 

for which output signals a r e  specified for every possible 

combination of input signals). This definition will be 

employed in the next section to define (give an algorithm 

for) analyzing such completely specified circuits. 

The definition of completely specified circuit given 
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i n  this section will  be somewhat stronger than necessary. 

That is, the definition will  consist of a test which wil l  

recognize a s  completely specified only those PARTIAL- 

COMPONENTS which a r e  of a particular form. 

anticipate that a more  general definition will be desirable 

W e  

in  later papers dealing with the synthesis of circuits; 

however, the definition given here is sufficient for the 

analysis of circuits. Informally speaking, what we shall 

require of a PARTIAL-COMBINATIONAL-CIRCUIT i s  

that each of i t s  PARTIAL-COMPONENTS correspond to 

a table which covers every possible combination of input 

signals and that in  each 'rrow'l of the table the value of 

each output be specified (i. e . ,  no X's  a r e  to occur on 

the right side of the table). 

Let us start  by developing the par t  of the test 

which determines if  every possible combination of input 

signals is covered in the table corresponding to a PARTIAL- 

COMPONENT. Informally, this means we want to check 

to see if the left side of the table contains every possible 

input combination under the interpretation given in the 

introduction of this paper. Consider the left side of the 
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t 

table correaponding to a PARTIAL-COMPONENT. Under 

the rule (given in the introduction), the X's  in this part 

of the table can be replaced by both 1's and 0's and if  

al l  possible such replacements were made, the new table 

(with no X ' s  ) would be the complete listing of input 

signal combinations for which the operation of. the circuit 

is specified. Clearly, i f  there a r e  many inputs, such an 

. expansion of the table is impractical (for 20 inputs such 

a listing would contain about one million entries). To 

avoid such an expansion, we employ the #-product 

(sharp-product) developed by Roth [ R-11. Firs t ,  we 

represent the left side of the table corresponding to a 

PARTIAL- C OMPONENT by an 

RL-COVER 

(B-STRING(RL-CUBE)[ u] * u) . 

We then define the #=product on such RL-COVERS. As 

can be seen (by reference to [ R-l]), such an RL-COVER 

u covers every possible input combination only if 

X # u = 5 . We now turn to the job of defining the 
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#-product within our formal system. 

Since the #-product wil l  introduce 6 values, 

we wil l  need the following trivial generalization of 

R L- C OVERS. 

R L -NU LL - C OV ER - or  R LN -C OV ER -ob jec t s 

(-+ (0)) 

(RL-COVER[ X] +x) 

(RLN-COVER[ (x)], RLN-COVER[ (y)] -c (xY)) 

Correspondingly, we wil l  need the following operation 

to delete 0 ' s  from RLN-cubes. 
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To define the #-product it is convenient to intro- 

duce the following operation which permits one to append 

a PL-CUBE to every RL-CUBE in an RL-COVER. 

The #-product between individual RL-CUBES 

(and E ' s  ) i s  then defined a s  follows: 

SHARP-OF-CUBES- or  SHRPC-objects 
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The above #-product can now be lifted to an operation 

on RL-COVERS a s  follows: 

SHARP -OF - COVERS- o r  SHC OV -objec t s 

Note: The definition schema IA i s  employed here in order 

to arrange the variables in the demred order to employ FZ2 
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and then to rearrange them so as to have SHCOV[ xy I 23 

correspond to x # y = z . 
The above definitions provide the machinery 

necessary for the f i r s t  partof the test. W e  turn now to 

setting up the machinery for the isecond par t  of the test-- 

for checking that there "are no X's on the right aide of 

the table. Our procedure here  is to check that the 

LABELS a r e  the same on the "right side" of every 

ARLS-CUBE in the PARTIAL-COMPONENT. 

we define the following types of objects: 

To do this, 

LABEL-EXTRACT- o r  LE-object 

The above wil l  extract the label from a PL-CUBE. We 

can lift i t  to extract the LABELS from the right side of 

an  RL-CUBE a s  follows: 

OUTPUTS-RL-CUBE- o r  OAC-object 
$ 
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(RL-CUBE[ X] , FZ~(LE)[ X I  U] -c X I  U) 

Next, we can define equality of B-STRINGS of LABELS. 

EQUALITY -LABEL-STRING- or ELS-object 

(B-STRING(LABEL)[ U] - + u I  U) 

( B -STRING( LABEL)[ ( U) ] , B -STRING( LABEL)[ ( V) ] 

* (uv) I (vu)) 
(ELS[uIv],ELS[vIw] + u I w , v I u )  

Finally, defining the function 

ID-object 

(OBJECT[ U] -c u I U) 

We can now put these  definitions together and 

define: 

COMPLETELY -SPECIFIED-COMPONENT - OT CS-COMP 

(P-COMP[ u], FCl(FPZ(LE))[ u 1 v], O(ELS[ X I  x], 

FZI(FPL(ID))[ U I  W] , SHCOV[ (X)W I (6)] +u) 
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Then we also get: 

COMPLETELY -SPECIFIED-CIRCUIT- o r  CS-CKT 

(B-STRING(CS-COMP)[ x], A(O(CC-COND))[ x] ex) 
F 

directly from the definitian of PC-CKT. 

2. 5 The analysis of circuits 

Given all the apparatus now at  our command, i t  i s  

very easy to present an algorithm for analyzing CS-CKT's. 

We f i r s t  define PAIR-DELETE- or  PDEL-objects 

and from this, 

CIRCUIT -SKELETON-object 

(PS-CKT[ X] , FZ~(FZI(PDEL))[ I y] -c I y) . 

Note that if x is a PS-COMP and CIRCUIT-SKELETON[ ( x )  1 y], 
then y i s  (corresponds to) the analysis table of the circuit 
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consisting of x alone.. 

Now we define: 

ANALYSIS 

(CS-CKT[ X] , CIRCUIT-SKELETON[ I y],  

. 
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3. CONCLUDING REMARKS 

The definitions and algorithms given in the preceed- 

ing section serve to illustrate that we can employ the 

a-object calculus to define the basic entities and opera- 

tions of switching theory. It should be clear that the 

a-object calculus, a s  a notation, provides a precise way 

to write down the definitions and algorithms that we need. 

What we have not shown in this paper is  that this approach 

provides anything beyond precision and a certain mathe- 

matical economy of initial means. In particular, we have 

not shown that the a-object calculus can be gainfully 

employed to facilitate proof of the correctness of defini- 

tions, or the validity of algorithms. 

It is our contention that the a-object calculus can 

be gainfully employed to develop the theory (i. e. ,  theorems 

and proof) a s  well a s  the definitions and algorithms of 

switching theory. However, we believe that the most 

fruitful approach to this problem i s  through a study of 

the underlying structure of the a-object calculus. Such 

a study should lead to precise notions of "data structure, If  

"definition, :algorithm, If lfapplication of algorithms, I f  



63  

and should also lead to an associated proof theory. 

would provide a general theory of algorithms and data- 

structures of interest in itself and with many applications 

including, of course, the theory of switching a s  begun in  

This 

this report. In particular, the methods for dealing with 

a-objects (and formal definitions and definition strings) 

in proofs should provide a uniform and precise approach 

for proving the theorems of switching iheory . 
Preliminary research has led a natural general- 

ization of the calculus of @-objects to similar calculi 

over algebras with finitely many operator8 and defining 

relations. Viewed this way, the @-object calculus of 

this paper is defined over a calculus with one binary 

operation (concatenation)', one I-ary operation (angle- 

bracketing) and four 0-ary operations (the constants 

0, 1, X, and '0 ); and with one defining relation (con- 

catenation i s  associative). The more general approach 

allows one to deal with problems arising from changes of 

notation, the relative power of diiferent notations, and 

with the general notions of mathematics, such a s  function 

and' relation. It also appears to facilitate the application 
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of the results of recursive function theory to the calculi 

and to the problems (decidable or undecidable) concerned 

with the optimization and classification of algorithms. 

This is relevant to the problems of proving the validity 

of algorithms a s  the form (or  clascBification) of an 

algorithm {or formal definition) is closely connected with 

what can be proved, or how something can be proved, about 

that algorithm. Because of the underlying finiteness of 

switching theory (as reflected by the fact that there 

"always" exist exhaustive algorithms for finding solu- 

tions), it  is conceivable that switching theory can be 

formulated in some manner which particularly facilitates 

proofs (and avoids most, if not all, questions of undecid- 

ability). However, the proof of the existence, and the 

finding of such a formulation, res t s  on further investi- 

gation of the underlying calculi. 

The a-object calculus, and the more  general 

calculi, also provide a means for providing a rigorous 

formulation of the F-notation I R-W-21. In particular, 

these calculi can be employed to give rigorous semantics 

to any particular F-notation. By combining the cr-object 
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calculus and the F-notation, one should be able to produce 

a rigorous, convenient, and uniform language in which to 

describe all  the switching algorithms given in the refer - 
ences of this paper. 
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1, INTRODUCTION 

The ApL/ 360 programs for the multiple-output two-level 

minimization algorithm a r e  an initial version which serves 

two purposes: 

1 )  Use of the programs should ease the learning of the 

algorithm since many examples a re  readily available; 

a (trivial) program has been written to generate test  

example s ; 

2)  Having an operating program available, more efficient 

versions may be prepared and test results validated. 

The programs follow very closely the F-notation formulation 

of the algorithm given in Reference 1. 

the algorithm follows : 

A brief description of 

The solution is built up recursively. Initially, the prime cubes 

a r e  computed, and then an 'extrema11 program EBAR is called. 

If there a r e  any extremals, the 'distinguished' par t  of the 

extremals is added to the solution and removed from the prime 

cube list. 

next order extremals (this is analogous to an onion-peeling 

process). When no extremals a r e  found, an arbitrary choice 

is made in the branching program, BBAR, which then calls 

EBAR to  build up each of the two solutions. 

can lead to a large solution tree, where EBAR and BBAR 

a r e  repeatedly called r e  cursively. 

[l ] A Calculus and an Algorithm for a Logic Minimization 

Then the extrema1 program is reentered to find the 

Multiple branching 

Together with an Algorithm Notation - J. Paul  Roth, 
E. G. Wagner. 
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The program contains, as modules, the identifiable sub- 

algorithms such as  the l"sharp-algorithmrf for computation of 

the prime cubes, the extrema1 computation, and the cost 

evaluations both in the less-than operation and in the branch 

selection. Portions of the program may thus be changed to be 

more efficient in speed o r  storage without revising the whole 

program, and statistics on the relative performances easily 

obtained, Also, the sub-algorithms a re  useable independent of 

the overall algorithm. ' 

To facilitate the modular usage and revision of the algorithm a 

brief programmer's manual is included in Section 4. 

syntax and semantics of each function in the program is 

de scribed. . 

The 

Section 2 describes the structure of the program. 

provides an introduction to its use. 

Section 3 

2. PROGRAM STRUCTURE 

The program takes as input two singular covers, one covering 

the care  complex of the problem, and the other covering the 

don't care  complex, and proceeds to compute recursively the 

minimum cost solution. 

senting the minimum solution. 

The output is a singular cover repre- 

A singular cube is represented in the program in one of three 

forms: 

a) As an alphameric vector of the form 'a a ] b  l...b 1 1"' m n 
ai c: 9, 1, x, 4 
b € 1 , ~  
i 
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m = the number of input coordinates, n = the number of output 

coordinates. 

b) As a 1 by (m t n t 1) matr ix  q of the same components 

(since the APL system distinguishes between an n-element 

vector and a 1 x n element matrix). 

c )  As a nullvector, in which case it identifies the empty cube. 

The ltuniversal cube" has ai = x(al1 i) and b = 1 (all j). 

cube in  which b = x for all j is the empty cube. A singular 

cover is a k x (m t n t 1)  alphameric matrix, each of whose 

rows represents a singular cube. 

A 
j 

j 

Examination of the F-notation formulation of the algorithm 

shows that most functions can be written as  functions of four 

variables each of which is a singular cover. 

C - a cover of the care  complex 

D - a cover of the don't care complex 

S - the singular cover of the solution 

Z - the set  of prime cubes. 

The APL language allows functions of 0, 1, o r  2 variables 

so that it is necessary to group the variables, so that a func- 

tion of four variables can be written as  an apparent function 

of only two variables. Because of this, and also because of 

the way the APL interpreter treated local variables, the 

following single variable a r ray  (IGA' ar ray)  was developed 

which contains within it the C, D, S ,  Z variables. The GA 

a r ray  is a 

!GAG' !GAD!, 'GAS' and 'GAZf are  used as markers  to 

separate the variables, and where p i s  4 plus the number of 

singular cubes in C, D, S, Z . The starting GA ar ray  is 

p by (m t n t 1)  matrix in which four *tag' rows; 



-4- 

formed by an initialization function which accepts as 

arguments the variables C, D of the problem. 

The three main functions in the program a r e  MXBAR, EBAR, 

and BBAR in direct correspondence with the F-notation 

formulation of the minimization algorithm. 

as an argument the initial value of the GA array, and, i f  

S covers C, returns S as the result, Otherwise, i f  S does 

not cover C, i t  computes the prime cubes using the SHARPALC 

MXBAR accepts 

function, appends the se t  of prime cubes to the GA array, 

and calls EBAR with the updated GA a r ray  as an argument. 

Note that i f  par t  of the solution is known, the initial GA a r ray  

can be composed to include it (although the INITIAL function 

does not provide this feature), in which case the solution might 

converge more rapidly. However, i f  such an initially intro- 

duced solution contains terms which a r e  not par t  of the mini- 

mum solution, they wouldnever be subsequently removed (either 

by the program, or, correspondingly, by the F-algorithm. ) 

EBAR and BBAR a re  

their input argument is 

singular cover. EBAR 

syntactically similar to MXBAR: 

a GA ar ray  and their output is a 

accepts the current GA a r ray  as 

argument, and, i f  the par t  of the GA ar ray  covers 

the tkarel1 par t  of the GA array, returns the solution par t  

as its value. 

the GA a r ray  as follows: Let A be the GA ar ray  then 

GAC O F  A will return the care 'part  of the array. GAG is 

the name of a tag vector which specified by the INITIAL 

function. ) 

(The OF function extracts a specified par t  of 
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If the current solution is incomplete then the less  than 

operation is performed, using the XTX and XUX functions, 

(The less  than operation on A is A -(XTX A) X U X A) and 

the extremals of the remaining prime cubes a re  computed 

using the EXT function, If the se t  of extremals computed is 

non-empty, then EBAR is entered recursively with modified 

argument. The modification performed by the DELTA func- 

tion adds the distinguished vertices of the extremals to the 

solution and removes them from the current extremals. 

If the se t  of extremals computed in EBAR is empty, then the 

branching process is initiated using the BBAR function with 

the current GA ar ray  as  argument. On entering the BBAR 

function a selection of an output vertex is made by the user, 

and the solutions with and without that output vertex a re  ex- 

plored, and the lesser  cost solution is chosen. The develop- 

ment of the alternative solutions i s  made by generating updated 

GA ar rays  for the alternative choices and executing the EBAR 

function for each. Of course, the EBAR function along either 

path may branch again and BBAR can thus be called recursively. 

' 

Ultimately each path of the recursion t ree  must terminate, 

since the algorithm always yields a solution. 
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3, INTRODUCTION TO USE 

In this section, we assume that the reader has an APL 

terminal available, and knows how to use the APL system. 

Making use of the descriptions in Section 4, i t  is suggested 

that the functions be tr ied out in the following order to gain 

some familiarity with the program elements: XBX; XDX, 

XEX, INTF, XIX, XJX, XKX, XMX, XSX, SHARP, 

SHARPALG, CCAT, IN, MINUS, RESID. (The set  of examples 

given in Section 4 may also be used to verify proper opera- 

tions, ) The functions in  the program make use of a set  of 

global variable 8 ,  which are  initialized by the INITIAL function. 

Referring to the description in Section 4, it  may be seen that 

(I 0) INITIAL 'XXX.. . X I XX.. , X' 
m n 

will se t  up the global variables for singular cubes with m 

input coordinates and n output coordinates. Wherever the 

dimensions of the singular cubes a re  to be changed, a new 

INITIAL function should be executed. 

If a random problem is desired, the function GAGADTESTB 

should be executed which will  specify C as the initial GA 

array, A, B, being specified according to their syntax as 

described in Section 4. 

INITIAL function may be executed directly. As stated, this 

function has C, D as  arguments. If an initial value of S is 

to be specified as well, then the CCAT function is used to add 

it to the GA array. 

If a known problem is to be run, the 
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The program is then executed using MXBAR with the 

generated GA a r ray  as argument. (Note that providing the 

GA ar ray  directly, without use of the INITIAL function will 

cause an e r r o r  condition since certain global variables a re  

set  up as side effects of the h T I A L  function. ) 

In executing MXBAR, the program will trace EBAR by 

printing EBAR followed by its argument whenever EBAR is 

entered, and similarly BBAR wil l  be traced. This trace is 

helpful in visualizing the recursive structure of the execution. 

The A P L  printout during execution is shown in the set of 

examples in Section 4. 

During the BBAR function execution, the program halts and 

waits for the manual input of a two element numeric vector. 

The f i rs t  number specifies which element of 2 of the GA 

a r r ay  is to be selected and the second number selects the 

vertex of the output part. Suppose Z is given by: 

1 x 0  I l x  

,1 l x  11 1 

x l l 1 1 1  

Then an input of 2 2 

cube to be added to the solution along the S g  path'of the 

will select 1 1 x I x 1 as  the singular 

branching function. To facilitate usage, all of the functions 

described in Section 4 have been combined as a function group 

in  APL, designated MOALG. The functions actually required 

in the algorithm itself have also been grouped as  MOALG1, 

which does not include initialization, test case generation. 
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The less  than operation was programmed according to an early 

version of the algorithm and does not correspond to the final 

formulation. The programmed version is u < v if  cost 

(su{u} ) ,  cost(SU { V I )  a n d ( u # ( S ) # v = r O ,  Theproper 

formulation, given in [I ] is: 

If for every coface uI of u (including the case u' = u) there 

exists a coface V I  of v such that (ul # (D U S ) ) # v t  = 0 and 

Cost (S U { V I } ) <  - cost (S U{u~}), 

- 
The cost is evaluated in a 

function called COST, which may be revised o r  rewritten to 

conform to different technological factors, 

version is described in Section 4 and examples a re  given at 

The programmed 

the end of that section; it envisions a two-level gating structure 

and adds a  it cost for each input variable occurrence, and a 

weighted sum of the f i rs t  level outputs depending on their 

fanout to the second level gates, 

4. PROGRAMMER'S MANUAL 

In this section, the APL functions in  the program are  listed 

alphabetically. Following each function, the syntax of the 

function call and the result is described. 

of the function is given. 

Then a description 

Note that the syntax as described is restricted to the intended 

use, and i s  not the broadest possible syntax for the given 

functions. 

semantics of the function is not necessarily as described here. 

As a trivial example, i f  the function INTF i s  executed, all 

that is required syntactically by the program is  that the 

argument be commensurate cubes of length - -  > S r T - ; 

When a function is used with a broader syntax, the 
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moreover, - B is a global vector which can be extended, by 

concatentation to allow INTF to accept syntactically as  i ts  

f i rs t  argument any commensurate alphameric vector satisfying 

the length restriction noted above, without altering the syntax 

o r  intended semantics of INTF. 

A set  of examples is given at the end of this section. 

BBAR 

Syntax: 

Semantic 

C + BBAR A 

A is a GA a r ray  

C is a singular cover 

BBAR is the branching alg rithm, - B(C, D, S, Z). 

When BBAR is entered 'BBAR' followed by the GA a r ray  

is printed out and input is requested from the user. 

is a two component numerical vector, whose first component 

denotes which singular cube of 2 is to be chosen, and whose 

second components selects the distinguished output of this 

singular cube. Two GA ar rays  a re  now formed corresponding 

to the two paths of the branch and EBAR is computed for each 

GA array. The costs of the computed singular covers along 

the paths a re  compared and the solution of l esser  cost is 

c hos en. 

Explication: Local variable G corresponds to g, H to h, 

and Q to f, N to Sg and 0 to & . 

The input 
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CCAT 

Syntax: C +  A CCAT B 

A is any matrix, or  vector; 

B is any matrix, o r  vector; 

Either A or B. is empty ( 10) o r  

A and B have the same number of columns. 

C is A i f  B is empty 

C is B i f  A is empty 

C is a matrix . 

Semantics : If A, B are  matrices having the same number 

of columns, A CCAT B is a matrix of the form [I] . If 

A o r  B is a vector it is considered as  a matrix of one row. 

COST 

Syntax: C + A  

A is a singular cover 

C is anuzperic scalar 

Sem antics : COST computes the cost of the solution par t  S 

of A, First, interface any cubes of S that have the same 

input (XAX function). 

as the s u m  of its nonvacuous inputs added to a function of its 

output components. The implemented function charges a unit 

cost for up to 3 output components, and two units of cost for 

4-9 output components. Finally, the costs of all the cubes a re  

summed. 

Then the cost of each cube is computed 
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DELTA 

Syntax: C + E  DELTA A 

A is a GA a r ray  

E is  a singular cover 

C is a GA array 
Semantics: A is the current GA array, and E is the 

current se t  of extremals. The local variable G, correspond- 

ing to f in the F-algorithm notation, covers the distinguished 

vertices of the extremals to be added to the current solution. 

I (cf. program listing, Section 5) covers the other vertices of 

the extremals which a re  not added to the solution. C is the 

updated GA a r r ay  where the following operations have been 

performed: C replaced by C #F, D replaced by DUSU F, 

S replaced by S U F ,  and 2 replaced by Z - E U(E # a F). 

EBAR 

Syntax: C - EBAB A 

A is a GA a r ray  

C is a singular cover 

Semantics : If S, the solution part  of A, covers the 

vertices of C, the care  complex of A, then S is returned. 

Otherwise, the lees than operation on A is performed by 

A -(XTX A) SUX A. Then, i f  the resulting A has no ex- 

tremals,  BBAR is called to initiate the branching process. 

Otherwise, the DELTA operation is performed to add to S 

stinguished vertices of the extremals, and EBAR is 

applied to the resulting GA array. 
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EX T 

Syntax: C - E X T  A 

A is a GA a r ray  

C is a singular cover 

Sem antics : EXT computes the extremals by the formula 

E X T = ( z c Z I z #  ( S U D U ( Z - z ) f  0 1 ,  

by executing XAY with Z and S U D as arguments. 

GACTEST 

Syntax: C - A GACTEST B 

A is a two component numeric vector 

B i s  a number 

C is a cover 

Semantics: GACTEST is a random test  generator which 

generates a singular cover of B singular cubes (after sub- 

suming) having m inputs and n outputs each where m is the 

first component of A and n is the second component of A. 

GADTEST 

Syntax: C --A GADTEST B 

A is a two component vector 

B is anumber  

C is a GA-array 

GADTEST generates a test case, utilize 

tializes the GA ar ray  and executes the multiple 

ation algorit . A [ 1 ] is the number of inputs. 

A [2 1 is the number of outputs. B is the number of cubes in 

the cover of the care complex. 
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IN 

Syntax: C --AINB 

A is a singular cube 

B is a singular cover 

C is anumber  

Sem antic s : If A is in B, C is the row number of A in 

B. If A i s  not in B, C i s  m t l ,  where m is the number of 

TOWS in B. 

INITIAL 

Syntax: C +A INITIAL B 

A,B a re  singular covers 

C is a GA-array 

Semantics : A is a singular cover.for the complex of don't 

cares,  which may be empty. B is a cover for the complex of 

cares,  which must be non-empty, INITIAL forms the s tar t -  

ing GA ar ray  and sets up the global vectors GAG, GAD, 

GAS, GAZ which a r e  used as tags, the global scalars 

D, L, M, S, T, U, and the global vectors - A, ,By ,E, E, - -  G, H. 

(If there a re  no don't cares,  I O  is entered for A . )  
- - - - - -  

INTF 

Syntax: C +A INTF B 

A, B, C are  singular cubes 

Semantics : C is the interface of A and B.  
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MINUS 

Syntax: C +A MINUS B 

A, B, C a re  singular covers. 

Semantics : C is A with the cubes of B deleted. 

MXBAR 

Syntax: C t M X B A R  A 

A is a GA-array 

C is a singular cover. 

Semantics : If S, the current solution, cover the verti eS 

of the care  complex, then the result is given by S. 

the se t  of prime cubes is computed as #alg(CUD) by the 

SHARPALG function, and appended t o  the GA array. EBAR 

is now applied to the resulting GA array. 

Otherwise, 

OF 

Syntax: C +  A O F B  

A is a label in GA 

B is a GA-array 

C i s  a cover 

Semantics: C is the cover of singular cubes following the 

label A up to, but not including, the next label, 
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PF 

Syntax: C - - A P F B  

A i s  the input part  of a singular cube 

€3 is a GA a r r ay  

C is 0 or 1 

Semantics: C is apredicate,  which is 1 when A is the 

input part  of some cube in the solution part  of B; otherwise 

c is  0. 

RESID 

Syntax: C --RESID A 

A is a matr ix  

C is a matrix or  an empty vector 

Sem antic s : C is the result of deleting the top row of A. 

If A is a vector or  a matrix of one row, then C i s  empty. 

SHARP 

Syntax: C --A SHARP B 

A, B, C a re  singular covers 

SHARP is a recursive function which forms Semantics : 

A # B, as follows: i f  A or  B is empty, then C is given by 

A. If B is a single singular cube, then A # B is computed 

by the XSX function. If B is a cover consisting of more than 

one singular cube, €3 = bl, BZ, . . . , B n 1, 
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SHARPALG 

Syntax: C - SHARPALG A 

C , A  are  singular covers 

Sem antics : SHARPALG computes the prime cubes of A 

where A is a cover of some singular cubical complex. First ,  

a universal singular cube B is formed, all of whose input 

components a r e  !XI, and all of whose output components a re  

111, Then C is given by B # ( B # A ) .  

XAX 

Syntax: C -XAX A 

A is a singular cover 

C is a singular cover 

Sem antic s : C is obtained from A by interfacing any 

singular cubes which have the same input part, adding their 

interface and deleting these particular cubes. 

XAY 

Syntax: C - A X A Y B  

A, B, C a re  singular covers 

Semantics : XAY is used in the extremal computation and 

forms the singular cover { a e A  1 a # ( B U  ( A - a ) #  6). 
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XBX 

Syntax: C - A X B X B  - 
A, B a re  commensurate cubes of 

elements 101, 1 1 1 ,  'XI 

C is a cube of elements ' O ' ,  I l 1 ,  ! X I ,  I b f  
Semantics : C is the interface of two non-void-cubes, 

where corresponding inputs a re  interfaced according to the 

following rule : 

XDX 

Syntax: C - - A X D X B  ' 

A, B a re  commensurate cubes of 101, I l l ,  [XI 

C is a cube of IO', t l l ,  8x1, *Oj  

Semantics: C is a cube whose elements are formed in  

accordance with the following rule for element 

c omp os i ti on: 

b 

a 0 1 x  

O X Q O  

1 1 x 1  

x x x x  

XDX is  used to form the output part  of the SHARP product of 

singular cubes. 
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XEX 
Syntax: C - A X E X  B 

A, B cube8 

c is (numekic)  or 1 

C ie apredicate,which is 1 if B is a 

face of A, or B is equal to A, 

0 otherwise. 

Semantics : 

XIX 
. Syntax: C ' t A  XIX B 

A, B are cubes of 'Or, ' 11 ,  'XI 

C is a cover of cubes 

Semantics: I f A # B  4 ' 0 ,  then C is  A # B  
- 

If A # B  = 0, then C is empty. 



-19- 

X JX 

Syntax: C -A XJX .B 
A, B a re  singular cubes 

C is a cover (possibly empty) 

Semantics: C is A#B. 

Let A =  a l a  A is a singular cube 1 2  
is the input part  

is the output part  

B e bib, where 

E = a2*b2 7% 
x x x  

defines &' 

- 
1.  a n bl = 0 ,  then C is equal to A. (Line [ 9 ]  branches 1 

to  line 11.93. 

2, (al [r b l )  or  (a = bl),  then 1 
i) E is all x's C is empty 

ii) E is not a11 X'S c is all E .  

(Line [ lo ]  branches to line [21] which terminates in case (i) 

or  continues to line Y Z Z )  in case (ii). 

3, bl al , then 

i) C includes all E, i f  E i s  not all X I S ,  and 

ii) C includes a term for each input that has an 

x in A and a 0, o r  1 in B. 

(Line [12] forms ( l ) ,  or  line [ l l ]  branches around it, as  

appropriate. Lines f13-161 fQrm part  (ii). Line 17 

restructures C. ) 
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XKX 

Syntax: C + A X K X B  

A, B are  singular cubes 

C is (numeric) 0 o r  1 

Semantics: C is apredicate which is 1 iff  B properly 

contains A or  B = A. 

Let A = a ( b  

B = c l d  

Then B properly contains A iff 

(c [z a and (b 3 d o r  b = d)) 

o r  

(d = a  and b 1 d ) .  

If A XKX B. = 1, then in the subsuming function XMX, A 

may be subsumed by B .  

XMX 

Syntax: C-XMX A 

A is a singular cover 

C is a singular cover 

Semantics : XMX performs the subsuming operation on A. 

Explication: Each singular cube in A is compared with each 

other cube by a "double DO-loop". 

indexes the inner loop. 

cube of A is compared with successive cubes of C, (line [: 63. 

If A [J;] is contained in  C [I;l; then I is reset  and J i s  

increased (line [9 1. If not, then i f  C [I;] is replaced by A[J; 1 
(line [77, then C [I;] is replaced by A[J;], line [ lo ]  and I is  

reset  and J is increased. 

J indexes the outer loop, I 

As the solution is being built up, the J th 
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If neither C D;] contains AD;] ,  or  vice versa, I is 

increased until C is exhausted, at which time A[J;] is added 

to C, J is increased and I reset. 

XNX 
Syntax: C - X N X  A 

A is a vector o r  matrix 

C is a matrix 

Sem antic s : I f  A is a matrix then C is given by A. I f  

A i s  a vector, then C is a restructured into a single row 

matrix. 

XQX 

Syntax: C + X Q X  A 

A is a vector o r  matrix 

C is (numeric) 0 or 1 

Semantics: C is apredicate  which is 1 i f  x is a vector 

or a matrix with one row. 

xsx . 

syntax: C - A  XSX B 

A is a non-empty singular cover 

B is a non-empty singular cube 

C is a singular cover 

Semantics : C is A # B  
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Explication: In this recursive computation of A # B, where 

B is a singular cube, and A is a singular cover, A is 

checked first to see i f  it contains exactly one cube, (line [2]), 

in which case the sharp product is computed by XJX (line [7]). 

Otherwise, letting A = { al,’aZ# . . . a 
al, ..., a 

a removed, A # B  = {a # B )  U (A # B )  is given by lines 3-60 

} = {al, Al } where 

a r e  the singular cubes of A and A is A with 
m 

m 1 

1 1 1 

XTX 
Syntax: C - X T X A  

A is a GA-array 

C is a (numeric) matrix 

Semantics: C is a nx1 matr ix  where n is the number of 

cubes in  Z. C[i; 11 is the cost of Z 

of Z. The cost function used is as follows: 

Let Zi = a1 b 

If a is the input part  of some singular cube in S then the 

cost of a is 0. Otherwise, the cost of a is the number of 

nonvacuous inputs. The cost of b is a function of the number 

the ith singular cube 
i’ 

of output coordinates k that have the assignment 1, namely: 

cost b = 1 k = 1,2, 3 

r 2  k =  4,5,6,7,8,9 

Explication: 

given by B in line [33. 

The cost function of the number of outputs is 



-23- 

XUX 

Syntax: C - Z X U X B  

A is a (numeric) (m x 1) matr ix  where m 

is the number of singular cubes in the 2 

component of B. B is a GA array, whose 

Z-component has at least  two singular cubes. 

C is a G A  array. 

Semantics : The first argument is XTX B which specifies 

the incremental cost for each singular cube of Z .  

XUX 

Semantics: A is a singular cover, consisting of two 

singular cubes, A = {alJ a ,2 }, and B is a singular cover. In 

the ''less than" operation, B is the "don't care" singular 

cover. 

i. e. that a2 covers all vertices of a 

don't care  complex. 

C is a predicate which 1 iff  (a #B)#a2  is empty; 
1 
which a re  not in the 1 

xvx 
Syntax: C - A X V X B  

A is a se t  of two singular cubes 

B is a set  of singular cubes 

C is a (numeric) 0 o r  1 

Let A = {al, a&}. C is a predicate which S em antic s : 

is 1 if (a, # B )  # a2 = 1 (XVX is used in the 'less than' 

computation). 
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xwx 
Syntax: C b X W X A  

A is a non-empty singular cover 

C is a cube of elements 1 1 1 ,  lxl 

C is the interface of the output parts of all Sem antics : 

the singular cubes of A. 

Examples 

The following set  of examples shows the operation of the 

various functions within the program as well as the overall 

program operation. The examples a re  intended to be self- 

explanatory and all variables used a re  defined. 
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5, PROGRAM LISTING 

The APL printout of the function definitions for all of the 

programs in the M. 0. Algorithm a re  listed below, 

Example 1. This example is taken from Appendix 1 of 

Reference [ l] .  

conditions, listed under G A  C, no don-t-care conditions, so 

- - 
The initial problem s o  consists of six care  

that a blank follows 

prime cubes G A  Z 

for this problem is 

statement 

As described above 

G A  D, no initial solution G A  S and no 

initially specified. A minimum cover S 

found invoking the function MXBAR, by the 
1 

S1 4-MXBAR SO 

and in [I] EBAR is  executed, first compu- 

ting the preim cubes Z to form the new G A  Z ar ray  

( G A C ,  G A D ,  and G A S  remain the same. 

Extremals a re  computed, whose results a r e  exhibited pr ior  to  

the next execution of EBAR: here the new G A  ar ray  shows a 

new G A  C, G A  D, G A S  and G A  2, In this second execution 

of EBAR no new extremals a r e  formed, so  that the branching 

function BBAR is called: Below BBAR is listed the same G A  

a r ray  as  shown at the second execution of EBAR. 

allows the user a choice of singular cube and its distinguished 

face from the G A C  array: here the choice I 1 is made, to 

choose the second cube and first coordinate. 

The program 

EBAR is then executed as  a function called in BBAR and a new 

set of extremals computed. 

EBAR is  executed four more times in the execution of the 

No further choices a re  made: 
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branching par t  of the algorithm. 

following S1, the final minimum is obtained. 

Finally, in the last a r ray  

Example 2. A2 

G AC 
OOOXpll 1x1 
oox1x11l11 
OXllXlllll 
OllXXll I li 
oooxoxlIx1 
oox1ox1(11 
ox 1 1 ox 1 1 1 1 
01 lX0Xl I1 1 
oooxooxlll 
00x1 oox I1 1 
oxllooxlll 
01 1xooxlll 
x110000~11 

GAD 
GAS 
GAZ 

Here A2 is listed a G A  a r ray  labelled A2 which is used in 

sub sequent examples, 

Example 3. Illustrates the structure of branching for the prob- 

lem of Example 1: when the choice 21 i s  made, effectively, 

EBAR is executed twice, 21 designates cube l x  0 I l x  

cube on which to  branch. 

ponds to finding a solution which includes- this cube in the 

solution, the column on the lower right is a computation of a 

as  the 

The column on the lower left corres- 

solution which does not include it. 

the one of the two of lower cost:) 

(The final solution takes - 

Example 4. 

several  functions, such as  SO SHARP S2, etc. . 
Consists of various examples of execution of 



6 .  DEVELOPMENT OF THE PROGRAM 

The programs for the multiple output two level minimization 

algorithm were written by the author during the summer of 

1968. At the beginning of the summer, the author had no 

familiarity with the single output minimization algorithm, did 

not know APL, and had available a rough draft version of the 

algorithm in its F-notation formulation. 

Among the factors contributing to the completion of thepro- 

g r a m  were: 

1) 

APLA360, 

is hard to measure, but it is the author's feeling that it would 

not take appreciably longer in the assembly language, assum- 

ing that an interactive assembly language processor were at 

the same operational level as the AF'L interpreter. 

the fact that it is written in APL should make it more accessi- ' 

ble to users. 

The use of an interactive computing terminal system, 

The factor which the APL language itself contributed 

However, 

2) The F-notation formulation, and the many clarifying con- 

versations with Dr. J. F. Roth, developer of the algorithm. 

Once understood, this formulation provides a gestalt view of 

the algorithm. 

3) The decision to model the program along the lines of the 

F-notation formulation, and to .place first priority on complet- 

ing the program and its documentation, at the possible cost of 

performance. This decision appeared to be justified, since the 

program was successfully run about a month before the end of 

the summer and a fairly extensive revision was made increasing 



the performance by roughly a factor of 5. 

The increases in efficiency were achieved by writing sub- 

routines as a r ray  operations within a single statement. 

Interfacing two cubes (XBX function) i s  a very straightforward 

application of this technique, where the a r r ay  operations in 

APL a re  used as loop control.. A more interesting illustra- 

tion is the sharp product of two cubes (XIX function) where the 

initial program containing nested loop and subroutine calls has 

been combined within a single statement. 

The use of single statements to  loop increases the efficiency of 

program storage and execution time, but requires somewhat 

increased storage at run time, It is most worthwhile for the 

key operatiops such as  sharping, and subsuming and the next 

candidate functions should be: XJX, XSX, SHARP , and XMX. 
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